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Overview

This report reviews the academic literature on risk aggregation and diversification as well
as the regulatory approaches. We will point out the advantages and disadvantages of the
different approaches with a focus on model risk issues.

We first discuss, in Section 1, the basic fundamentals of measuring aggregated risk.
Specifically, we review the concept of a risk measure as a suitable way to measure the ag-
gregate risk. We discuss desirable properties of risk measures and illustrate our discussion
with the study of Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR).

Section 2 explores the question of diversification benefits associated with risk ag-
gregation and the potential limitations of correlations as the only statistic to measure
dependence. We go beyond correlations and explain that a full multivariate model is
needed to obtain a correct description of the aggregate risk position.

We then explore the regulators approach to risk aggregation and diversification in Sec-
tion 3, and provide some observations on the implicit assumption made by international
regulators and different approaches that can be taken.

We end our review by highlighting that model risk becomes a key issue in mea-
suring risk aggregation and diversification. We explore in Section 4 a framework that
allows practical quantification of model risk and which has been recently developed in
Bernard and Vanduffel [2015a]1(building further on ideas of Embrechts et al. [2013]). De-
tails are provided in Appendices A and B.

Introduction

The risk assessment of high-dimensional portfolios (X1, X2, ..., Xd) is a core issue in risk
management of financial institutions. In particular, this problem appears naturally for
an insurance company. An insurer is typically exposed to different risk factors (e.g., non-
life risk, longevity risk, credit risk, market risk, operational risk), has different business
lines or has an exposure to several portfolios of clients. In this regard, one typically
attempts to measure the risk of a random sum, S =

∑d
i=1 Xi, in which the individual

risks Xi depict losses (claims of the different customers, changes in the different market
risk factors,...) using a risk measure such as the variance, the Value-at-Risk (VaR) or the

1This paper received the 2014 PRMIA Award for New Frontiers in Risk Management.

1



Tail-Value-at-Risk2 (TVaR). It is clear that solving this problem is mainly a numerical
issue once the joint distribution of (X1, X2, ..., Xd) is completely specified. Unfortunately,
estimating a multivariate distribution is a difficult task. In many cases, the actuary will
be able to use mathematical and statistical techniques to describe the marginal risks Xi

fruitfully but the dependence among the risks is not specified, or only partially specified.
In other words, the assessment of portfolio risk is prone to model misspecification (model
risk).

From a mathematical point of view, it is then often convenient to assume that the
random variables Xi are mutually independent, because powerful and accurate compu-
tation methods such as Panjer’s recursion and the technique of convolution can then be
applied. In this case, one can also take advantage of the Central Limit Theorem, which
states that the sum of risks, S, is approximately normally distributed if the number of
risks is sufficiently high. In fact, the mere existence of insurance is based on the as-
sumption of mutual independence among the insured risks, and sometimes this complies,
approximately, with reality. In the majority of cases, however, the different risks will be
interrelated to a certain extent. For example, a sum S of dependent risks occurs when
considering the aggregate claims amount of a non-life insurance portfolio because the
insured risks are subject to some common factors such as geography, climate or economic
environment. The cumulative distribution function of S can no longer be easily specified.

Standard approaches to estimating a multivariate distribution among dependent risks
consist in using a multivariate Gaussian distribution or a multivariate Student t distri-
bution, but there is ample evidence that these models are not always adequate. More
precisely, while the multivariate Gaussian distribution can be suitable as a fit to a dataset
“on the whole”, it is usually a poor choice if one wants to use it to obtain accurate es-
timates of the probability of simultaneous extreme (“tail”) events, or, equivalently, if
one wants to estimate the VaR of the aggregate portfolio S =

∑d
i=1 Xi at a given high

confidence interval; see McNeil et al. [2010]. The use of the multivariate Gaussian model
is also based on the (wrong) intuition that correlations3 are enough to model depen-
dence (Embrechts et al. [1999], Embrechts et al. [2002]). This fallacy also underpins the
variance-covariance standard approach that is used for capital aggregation in Basel III
and Solvency II, and which also appears in many risk management frameworks in the
industry. Furthermore, in practice, there are not enough observations that can be consid-
ered as tail events. In fact, there is always a level beyond which there is no observation.
Therefore if one makes a choice for modeling tail dependence, it has to be somewhat
arbitrary, at least not based on observed data.

There is recent literature on the development of flexible multivariate models that
allow a much better fit to the data using for example pair copula constructions and vines
(see e.g. Aas et al. [2009] or Czado [2010] for an overview). While these models have
theoretical and intuitive appeal, their successful use in practice requires a dataset that is
sufficiently rich. However, no model is perfect, and while such developments are clearly
needed for an accurate assessment of portfolio risk, they are only useful to regulators and
risk managers if they are able to significantly reduce the model risk that is inherent in

2In the literature it is also called the Expected shortfall, the Conditional Value at Risk and the Tail
Value-at-Risk, among others.

3It should be clear that using correlations is not enough to model dependence, as a single number
(i.e., the correlation) cannot be sufficient to describe the interaction between variables unless additional
assumptions are made (e.g., a Gaussian dependence structure).
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risk assessments.

In this review we provide a framework that allows practical quantification of model
risk and which has been recently developed in Bernard and Vanduffel [2015a] (building
further on ideas of Embrechts et al. [2013] and references herein). Technically, consider
N observed vectors {(x1i, ..., xdi)}i=1,...,N and assume that a multivariate model has been
fitted to this dataset. However, one does not want to trust the fitted multivariate model
in areas of the support that do not contain enough data points (e.g., tail areas). The
idea is thus to split R

d into two subsets, the first subset F is referred to as the “fixed
part” and the second subset U is the “unfixed part”, which will incorporate all the
areas for the fitted model is not giving an appropriate fit. This incorporates the two
directions discussed above for risk aggregation. Precisely, if one has a perfect trust in
the model, then all observations are in the “fixed” part (U = ∅) and there is no model
risk. If one has no trust at all in the fit of the dependence, then F = ∅ and we are
in the setting of Embrechts et al. [2013] who derives risk bounds for portfolios when the
marginal distributions of the risky components are known but no dependence information
is available. The approach of Bernard and Vanduffel [2015a] makes it possible to consider
dependence information in a natural way and may lead to more narrow risk bounds. This
framework is also supplemented with an algorithm allowing actuaries to deal with model
risk in a very practical way, as we will show in full details.

1 Measuring Aggregate Risk

Insurance companies essentially exchange premiums against (future) random claims.
Consider a portfolio containing d policies and let Xi (i = 1, 2, ..., d) denote the loss,
defined as the random claim net of the premium, of the i−th policy. In order to pro-
tect policyholders and other debtholders against insolvency, the regulator will require the
portfolio loss S = X1 + X2 + ... + Xd to be “low enough” as compared to the available
resources, say a capital requirement K, which means that the available capital K has to
be such that S − K is a “safe bet” for the debtholders. i.e., one is “reasonably sure”
that the event ‘S > K’ is of minor importance (Tsanakas and Desli [2005], Dhaene et al.
[2012]).

It is clear that measuring the riskiness of S = X1+X2+ ...+Xd is of key importance
for setting capital requirements. However, there are several other reasons for studying the
properties of the aggregate loss S. Indeed, an important task of an Enterprise Risk Man-
agement (ERM) framework concerns capital (risk) allocation, i.e., the allocation of total
capital held by the insurer across its various constituents (subgroups) such as business
lines, risk types, geographical areas, among others. Indeed, doing so makes it possible
to redistribute the cost of holding capital across the various constituents so that it can
be transferred back to the depositors or policyholders in the form of charges (premi-
ums). Risk allocation makes it also possible to assess the performance of the different
business lines by determining the return on allocated capital for each line. Finally, the
exercise of risk aggregation and allocation may help to identify areas of risk consumption
within a given organization and thus to support the decision making concerning business
expansions, reductions or even eliminations; see Panjer [2001], Tsanakas [2009].

When measuring the aggregate risk S, it is also important to consider the context at
hand. In particular, different stakeholders may have different perceptions of riskiness. For
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example, depositors and policyholders mainly care only about the probability that the
company will meet its obligations. Regulators primarily share the interests of depositors
and policyholders and establish rules to determine the required capital to be held by the
company. However, they also care about the magnitude of the loss given that it exceeds
the capital held, as this amount that needs to be funded by society when a bail out is
needed. Formally, they care about the shortfall of the portfolio loss S with solvency
capital requirement ̺ (S) ; that is,

(S − ̺ (S))+ := max (0, S − ̺ [S]) (1.1)

The shortfall is thus part of the total loss that cannot be covered by the insurer. It is
also referred to as the loss to society or the policyholders deficit. In view of their limited
liability, shareholders do not really have to care about the residual risk but rather focus
on the properties of the variable S − (S − ̺ (S))+ . = min(S, ̺ (S)). In summary, various
stakeholders may have different perceptions and sensitivities with respect to the meaning
of the risk they run, and they may employ different paradigms to defining and measuring
it.

As for measuring the risk, the two most influential risk measures are the Value-at-
Risk (VaR) and the Tail-Value-at-Risk (TVaR).4 For a given probability level p, they are
denoted by VaRp and TVaRp, respectively, and are defined as

VaRp (S) = min {x | P [S 6 s] > p} , 0 < p < 1, (1.2)

and

TVaRp (S) =
1

1− p

∫ 1

p

VaRq [S] dq, 0 < p < 1. (1.3)

So, VaRp is merely the minimum loss one observes with probability 1−p whereas TVaRp

is the average of all upper VaRs.

1.1 Coherent risk measures

The VaR and TVaR are merely two particular examples of risk measures. In fact, any
functional ̺ mapping the random loss X (belonging to a relevant5 set Γ of random losses)
into a number ̺[X] can be used. However, it makes sense to impose certain properties
(axioms) to the risk measure ̺. Hereafter, we define a typical (and appealing) set of
axioms. From a normative point of view, the “best set of axioms” is however nonexistent,
as any normative axiomatic setting is based on a “belief” in its underpinning axioms. We
obtain,

• Positive homogeneity : for any X ∈ Γ and a > 0, ̺ [aX] = a̺ [X] .

• Translation invariance: for any X ∈ Γ and b ∈ R, ̺ [X + b] = ̺ [X] + b.

• Monotonicity : for any X, Y ∈ Γ, X 6 Y implies that ̺ [X] 6 ̺ [Y ] .

4Between these two, the Value-at-Risk is currently by far the most popular risk measure in practice,
among both regulators and risk managers; see, for example, Jorion [2006].

5In particular, the set Γ contains the random losses Xi (i = 1, 2, ..., d) and we assume that Xi, Xj ∈ Γ
implies that Xi +Xj ∈ Γ, and also aXi ∈ Γ for any a > 0 and Xi + b ∈ Γ for any real b.
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• Subadditivity : for any X, Y ∈ Γ, ̺ [X + Y ] 6 ̺ [X] + ̺ [Y ] .

In Artzner et al. [1999], a risk measure that satisfies the aforementioned four proper-
ties of monotonicity, positive homogeneity, translation invariance and (most noticeably)
subadditivity is called a coherent risk measure. As is well-known, the Value-at-Risk does
not satisfy the subadditivity property whereas for any p the Tail-Value-at-Risk does. In
fact, TVaR can be readily seen as the smallest coherent risk measure that is more con-
servative than VaR (which is not coherent) (for a proof, see Artzner et al. [1999] and also
Dhaene et al. [2006]).

While the first three properties do not present much controversy, the desirability of the
subadditivity property of a risk measure has been a major topic for research and discussion
(see also Section 2.1). In the next subsection we explain that subadditivity is typically a
natural constraint indeed. In this regard, we stress that the terminology “coherent” can
be somewhat misleading as it may suggest that any risk measure that is not “coherent”
is inadequate. Note that the well-known standard deviation principle, defined as ̺(X) =
E(X) + k

√
var(X) for some constant k, does not satisfy the monotonicity axiom and

is thus not coherent6. In what follows, we assume in line with the academic literature
and current practice that ̺(X) only depends on the distribution of X (i.e., ̺ (X) is a
functional of the distribution of X and is called a law-invariant risk measure).

1.2 Backtesting and robustness of risk measures

Backtesting: Ultimately, a model is used to assess the riskiness of S and to obtain a
risk number ̺ (S) . In many cases, it is possible to build several competing models that
are all consistent with respect to the available (incomplete) information and merely differ
with respect to the ad-hoc assumptions that are made.

A natural way to compare the competing models is to use an error measure that
involves the point forecasts and the realizing observations. More precisely, the perfor-
mance of a particular model can be summarized by means of the average T of the scoring
function T over n forecast cases, i.e.,

T =
n∑

i=1

T (xi, yi), (1.4)

where the i−th forecast case corresponds to the couple (xi, yi) in which xi is the point
forecast and yi is the observation (i = 1, 2, ..., n). Typical examples of scoring functions
are the squared error T (x, y) = (x− y)2 and the absolute error T (x, y) = |x− y|.

Gneiting [2011] shows that the scoring function T used should be adapted to the risk
measure at hand, otherwise misguided inferences can be obtained. This author argues
that one should evaluate the quality of the model (used to predict the functional ̺ (S)) by
using a scoring function that would issue this functional as an optimal point forecast. If a
scoring function is given, the optimal forecast (assuming that observations are identically

6A distortion risk measure, defined as ̺(X) =
∫
1

0
F−1(t)g′(1− t)dt for an increasing function g with

g(0) = 0, g(1) = 1 is coherent if g is concave on [0, 1]. We refer to Wang [2000], Bäuerle and Müller
[2006] and Föllmer and Schied [2010] and the references therein for studies of risk measures and their
properties.
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and independently distributed), by applying Bayes rule, follows from

x∗ = argmin
x

E(T (x, S)), (1.5)

For example, if the scoring function is the squared error, the optimal forecast is known
to be the mean of S, while if the scoring function is the absolute error, the solution is
given by its median. If this match between risk measure (functional) and scoring function
exists, then the risk measure is “elicitable”. For example, the mean and the median are
elicitable. Also the VaR is elicitable, as using a (generalized) piecewise linear scoring
function is consistent with VaR estimates. However, not every risk measure is elicitable:
the standard deviation is not and, most notably, also the TVaR is not elicitable. See also
Ziegel [2014] and Embrechts and Hofert [2014].

Risk measures that are not elicitable make it possible that there will be inconsistencies
when comparing point forecasts from different models and/or from different forecasters.
Suppose you have a model which is known to provide the best 99.5%-VaR estimate of
the portfolio loss. However, there is also another model available that is known to give a
suboptimal 99.5%-VaR estimate. Then, if you use the square error scoring function (which
is not consistent with 99.5%-VaR) to evaluate the 99.5%-VaR estimates you might end
up picking the suboptimal models, simply because you are using the wrong metric to
assess the 99.5%-VaR estimates.

A few comments are in order: TVaR is not elicitable but it is indirectly elicitable
as it can be decomposed into a conditional mean and a quantile, which are both sep-
arately elicitable. Furthermore, backtesting requires a rich data sample of predictions
and observations, which is not readily available in the context of solvency assessments
in which the horizon used is typically one year. Furthermore, the consistency argument
used to link a risk measure to an optimal scoring function builds on the assumption that
all observations are identically and independently distributed, which is not always the
standard situation encountered in risk practice.

Robustness: Another important topic concerns robustness of the risk measure with
respect to model misspecification and small changes in the data. From a regulator’s
viewpoint, the risk measure used should really be stable with respect to varying model
assumptions and small changes in data sets. In the context of solvency II, two insurers
holding the same portfolio should obtain the same VaR for this portfolio. However,
when the correct model cannot be identified with (almost) certainty, the insurers may
use two different models and obtain significantly different VaR results. For example,
Chernih et al. [2010], show that it is possible to build a credit risk portfolio model that is
consistent with the standard7 MKMV credit risk model one with the exception of MKMV
using a Gaussian dependence among asset returns whereas Chernih et al. [2010] employ
a different copula (which, however, yields the same correlations as in MKMV). Hence,
both models are perfectly consistent with the available information on exposure, loss-
given default, default probabilities and correlations, but when used to estimate the 99,5%
VaR of a typical loan portfolio their results can differ with a factor as high as 15; see also

7The MKMV model is used by many financial institutions for assessing the riskiness of credit risk
portfolios. Furthermore, the Basel III standard framework relies on it to determine the required capital
that banks need to hold for the credit risk they run; see Basel Committee [2010b]. Also the Solvency II
framework uses this formula to decide on the amount of capital that insurers need to hold as a buffer
against the adverse consequences if one or more of their reinsurance or derivative counterparts fail.
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Heyde and Kou [2004], Kou et al. [2013], Bernard et al. [2013b] and Bernard et al. [2015]
for more evidence and other examples. In the light of these observations Bernard et al.
[2013b] warn for the use of VaR at high confidence levels (e.g., 99.5%) as a basis for capital
requirements. Note also that if the external risk measure is not robust, institutions may
pursue regulatory arbitrage by choosing a model that significantly reduces the capital
requirements or by manipulating the input data.

2 Aggregation and Diversification

2.1 Diversification Benefits and Subadditivity

From the Canadian regulator’s website (OSFI [2014]), one can read “we define risk ag-
gregation as the approach used to calculate the total of each and all of the risk elements.
A diversification credit results when the method of aggregation of risks produces results
that are less than the sum of the total of the individual risk elements.” Diversification
benefits may come from pooling risks within one type of risk such as insurance risk, from
pooling several types of risks (e.g., insurance risk and asset risk), across entities or across
geographies. There is a careful warning that it is hard to determine the diversification
benefits in period of stress. Capital requirements are determined to cover stress periods
and it is especially in these stressed periods that some potential diversification benefits
disappear. Reduction of capital should be granted for diversification benefits only in the
case when even during stress periods, the diversification benefit stay valid. Some benefits
should however be recognized. See OSFI [2014] for discussion of diversification benefits
between volatility risk and respectively mortality risk, morbidity risk, longevity risk and
lapse risk.

Let us consider portfolios with respective losses S1 and S2 and let ̺ be a risk measure
used for setting capital requirements; i.e., ̺(S1) is the capital for the first portfolio, ̺ (S2)
is the capital for the second portfolio and ̺(S1 + S2) is the capital of the combined
(merged) position. Note that we assume that the losses S1 and S2 do not change of
nature when merging the portfolios. In reality, however, merging or splitting portfolios
may change management, business strategy and cost structure, among others, and may
thus change the marginal distribution of the losses under consideration.

A standard definition for the diversification benefit, denoted by DB(̺, S1, S2), is that

DB(̺, S1, S2) = ̺ (S1) + ̺ (S2)− ̺ (S1 + S2) . (2.6)

Hence, DB(̺, S1, S2) provides the gain (loss) one obtains by merging two portfolios.
It is clear that if ̺ is coherent (and thus subadditive) then the diversification benefit
is non-negative, which corresponds to the common intuition that merging risks creates
benefits. To confirm this intuition, let us observe that

(S1 + S2 − ̺ (S1)− ̺ (S2))
+
6

2∑

j=1

(Sj − ̺ (Sj))
+ . (2.7)

Inequality (2.7) states that the shortfall risk of the merged portfolio is always smaller
than the sum of the shortfall risks of the stand-alone portfolios, when the solvency capital
requirement is additive. It expresses that, from the viewpoint of the regulator, a merger
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is beneficial in the sense that shortfall risk decreases when the capitals are summed up.
The underlying reason is clear: within the merged portfolio, the shortfall of one of the
entities can be compensated by the gain of the other. In summary, “a merger decreases the
shortfall”. Hence, the inequality (2.7) indicates that the solvency capital of the merged
position can be smaller than the sum of the solvency capitals of the two stand-alone
portfolios. These observations provide support for the common belief that a solvency
capital requirement (risk measure) should be subadditive. Indeed, when merging two
stand-alone portfolios, subadditivity is allowed by the regulator as long as

(S1 + S2 − ̺ (S1 + S2))
+
6

2∑

j=1

(Sj − ̺ (Sj))
+

holds. In this regard, let us notice that the requirement of subadditivity implies that

(S1 + S2 − ̺ (S1 + S2))
+
> (S1 + S2 − ̺ (S1)− ̺ (S2))

+ , (2.8)

and consequently, for some realizations (s1, s2) we may have that

(s1 + s2 − ̺ (S1 + S2))
+ > (s1 − ̺ (S1))

+ + (s2 − ̺ [S2])
+ .

Hence, the use of a subadditive risk measure may give rise to a larger shortfall than the
sum of the shortfalls of the stand-alone entities, i.e.,

(s1 + s2 − ̺ (S1 + S2))
+ > (s1 − ̺ (S1))

+ + (s2 − ̺ (S2))
+

may hold (Dhaene et al. [2008]). Therefore, while subadditivity is an acceptable property
from the viewpoint of regulators they should restrict the degree of subadditivity in order
to avoid that (S1 + S2 − ̺ (S1 + S2))

+ becomes too risky as compared to (S1 − ̺ (S1))
++

(S2 − ̺ (S2))
+ .

In this regard, it is also important to note that it is not clear cut that merging is
advantageous for the shareholders. We explain this as follows. For portfolio j (j = 1, 2)
the end-of-the-year available funds are given by (̺ (Sj)− Sj)

+. Indeed, if the loss Sj is
smaller than the capital ̺ (Sj), then the funds that belong to the shareholders (at the
end of the reference period) will be given by ̺ (Sj)− Sj whereas in the case that the loss
Sj exceeds ̺ (Sj), the business unit related to this portfolio gets ruined and the available
funds become equal to zero. Since

(̺ (S1) + ̺ (S2)− S1 − S2)
+
6

2∑

j=1

(̺ (Sj)− Sj)
+ , (2.9)

we observe that keeping the two portfolios separated might be preferred from the share-
holders’ point of view, essentially because in this case fire walls are built in, ensuring that
the poor performance of one portfolio will not contaminate the other one. In fact, the
shareholders and regulators have interests that are not fully aligned; see also Dhaene et al.
[2008] and Dhaene et al. [2009] for more discussion.

2.2 The Fallacy of Using Correlations Only

Some practitioners appear to believe that for aggregating two risks one only needs to know
their correlation coefficient. This (wrong) intuition is likely due to the widespread use and
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importance8 of the multivariate normal distribution that is fully characterized upon spec-
ification of the means, standard deviations and pairwise correlations (Embrechts et al.
[1999, 2002]). However, one should be aware of the fact that the multivariate normal
distribution inherits a choice of a specific (Gaussian) dependence already and that corre-
lations are merely needed to parameterize this Gaussian dependence. Effectively, it is easy
to construct two normal random variables that have a specific correlation coefficient but
that are not jointly (bivariate) normal. To illustrate this feature, let X and Y be standard
normally distributed random variables that are independent. In particular they have a
Gaussian dependence with zero correlation. Next, we consider Zc defined as Z = −X if
|X| < c and Z = X if |X| > c (c > 0). It is easy to see that Z is also standard normally
distributed: it has perfect positive correlation with X in the tails and perfect negative
correlation otherwise. One can then choose c∗ such that correlation between X and Zc∗

is zero (c∗ ≈ 1.538). Hence, when p > Φ(c∗) (Φ(·) denotes the c.d.f. of the standard
normal random variable), VaRp(X +Zc∗) = 2Φ−1(p) whereas VaRp(X +Y ) =

√
2Φ−1(p).

A numerical illustration can be found in Figure 2.1.
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Figure 2.1: Illustration of three situations where the random variables are standard nor-
mally distributed and have zero correlation.

Another example illustrating the deficiencies of correlations concerns risk measure-
ment of a portfolio of credit loans. To explain this idea, let us consider risks Xi (i =
1, 2, ..., n) indicating default events so that S = Xi + X2 + ... + Xn reflects the number
of defaults of the portfolio. Specifically, Let pi denote the probability that the i-th com-
pany defaults and denote by pij the pairwise default probability that both company i and
company j default. The pairwise default correlation ρDij (i, j = 1, 2, . . . , n) is then given
as

ρDij =
pij − pipj√

pi(1− pi)
√
pj(1− pj)

. (2.10)

In other words, correlations only reveal full information on interaction between two default
event (pairwise), but not really on the manner three or more loans interact. In this
regard, note that there is an intrinsic lack of sufficient default statistics (joint defaults are
inherently very rare events) and one can simply not expect to be able to reliably estimate

8The multivariate distribution is at the center of many theories and applications such as linear regres-
sion, principal component analysis, CAPM, Markowitz mean-variance analysis, discriminant analysis,
capital aggregation (e.g., Basel III and Solvency II), Credit Portfolio modeling (Moody’s KMV model).
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higher order joint default probabilities. In other words, assessing the risk of a credit risk
portfolio is inherently subject to model uncertainty.9 For example, the influential MKMV
model links defaults of companies to the asset return behavior and assumes that asset
returns are multivariate normally distributed. This assumption, however, is merely one
possible choice and there are no reasons to believe this assumption is close to reality.
Bernard, Rüschendorf and Vanduffel 2013b assess the impact of model uncertainty on
VaR calculations. When using p = 99.5% as the basis for calculating VaR and capital
requirements (as in Basel III and Solvency II), the results of industry models are typically
within a wide range of possible values of VaR. By contrast, model risk appears more
limited when using more moderate levels of probability to assessing the VaR. These
authors conclude that it might be useful to impose additional constraints on models
when used for setting capital requirements. For example, one may use the obtained VaR
bounds to set a minimum value on the VaR that is obtained by the internal model, or,
one may want to impose a particular model that different institutions need to use for
computing capital requirements, as this provides some guarantee that capital levels can
be readily compared across institutions also yielding fair competition.

2.3 The impact of micro correlations

In this section, we present another weakness of correlation. Kousky and Cooke [2012] ex-
plain how catastrophic risks are usually characterized by fat tails and dependence. With
fat-tailed loss distributions, the probability of an event declines only slowly, relative to
its severity, meaning that very large losses are not so exceptional (for more mathemati-
cal explanations we refer to Kousky and Cooke [2012]). Many natural catastrophes have
been shown to be fat tailed. As explained in full details in Kousky and Cooke [2012],
catastrophes can introduce another type of dependence, which is called tail dependence.
Tail dependence refers to the probability that one variable exceeds a certain percentile,
given that another has also exceeded that percentile. More simply, it means bad things
are more likely to happen together. It is clear that a catastrophe will potentially hit si-
multaneously multiple lines of business for an insurer (houses, cars, health, businesses...).
Lescourret and Robert [2006] have observed such tail dependence for lines of insurance
covering over 700 storm events in France. Moreover, catastrophic risks tend to be spa-
tially correlated because of the high dependence among the claims due to a given disaster.
In practice, this correlation declines with the spatial distance between policies. When it
declines to zero, it allows insurers to diversify by holding policies in different regions. Un-
fortunately, Kousky and Cooke [2012] find that “close to zero” does not count as zero for
diversification benefits. Even small, positive, average correlations among policies, which
they term “micro-correlations”, can cause problems in risk aggregation.

The main issue with microcorrelation comes from the fact that the law of large num-
bers fails when risks are not independent even if they display a correlation coefficient
that is very close to zero. This is well explained in the works of Kousky and Cooke
[2009], Cooke and Kousky [2010], and Cooke et al. [2011] applied on catastrophic risks
in Kousky and Cooke [2012]. The basic idea is very simple and is based on the situ-
ations in which policies have a small, average, positive correlation (say 0.04, which is
the average correlation found in flood insurance claims in the U.S. at a county level in
Cooke and Kousky [2010]). Cooke and Kousky show how quickly tiny, positive correla-

9Duffie and Singleton [2012].
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tions between policies can become pernicious.

Let X1, ..., Xn and Y1, ..., Yn be two sets of random variables with the same average
variance σ2 and average covariance C (within and between sets). The correlation of the
sums of the X’s and the sum of the Y ’s is easily found to be:

corr

(
n∑

i=1

Xi,

n∑

i=1

Yi

)
=

n2C

nσ2 + n(n− 1)C
(2.11)

The main issue is that it goes to 1 as n grows, if C is non-zero (even very small) and
σ2 is finite. If all variables are independent, then C = 0, and the correlation in (2.11) is
zero. To highlight this amplification of correlation, Kousky and Cooke [2009] use flood
insurance claim data. They randomly draw pairs of US counties and compute their
correlation. The green histogram in Figure 2.2 shows 500 such correlations. The average
correlation is 0.04. Although a few counties have high and positive correlations, most of
the correlations are very small and around zero. Instead of looking at the correlations
between two randomly chosen counties, they then sum 100 randomly chosen counties and
correlating this with the sum of another distinct set of 100 randomly chosen counties.
After repeating this 500 times, they obtain the blue histogram where the average of 500
such correlations (of 100) is 0.23. The red histogram depicts 500 correlations (of 500)
with an average value is 0.71. This dramatic increase in correlation is a result of the
micro-correlations between the individual variables.

 

Figure 2.2: Figure 11 from Kousky and Cooke [2009] is reproduced here as an illustration.

2.4 Fitting a Multivariate Distribution

In practice, there exist efficient and accurate statistical techniques to estimate the respec-
tive marginal distributions ofX = (X1, · · · , Xd). On the other hand, the joint dependence
structure of X is often much more difficult to capture: there are computational and con-
vergence issues with statistical inference of multi-dimensional data, and the choice of
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multivariate distributions is quite limited compared to the modelling of marginal dis-
tributions. However, an inappropriate dependence assumption can have important risk
management consequences. For example, (mis)using the Gaussian multivariate copula,
can result in severely underestimating probability of simultaneous default in a large basket
of firms (McNeil et al. [2010]).

The easiest (and therefore popular) modeling of a multivariate distribution is to use
a multivariate Gaussian or multivariate Student distribution. The advantage of the mul-
tivariate Student distribution is that it displays some tail dependence. However, there
are limitations of this multivariate dependence as there is a single degree of freedom
parameter which drives the tail dependence of all pairs of variables.

More generally, multivariate distribution can be decomposed in the marginal distribu-
tions FXi

, i = 1, 2, ..., d (reflecting the stand-alone risks) and a so-called copula function
C (reflecting the dependence). More precisely, Sklar [1959]’s theorem states that there
exists a vector (U1, U2, ..., Ud) of standard uniformly distributed random variables such
that

X
d
= (F−1

X1
(U1), F

−1
X2

(U2), ..., F
−1
Xn

(Ud)). (2.12)

where “
d
=” reflects equality in distribution. The representation (2.12) thus shows that

the distributional properties of the portfolio X are indeed completely specified by the
marginal distributions FXi

(i = 1, 2, ..., d) of its risky components and the joint distribu-
tion C of (U1, U2, ..., Ud) describing the interaction among the risks of the portfolio.

Copulas have been extensively studied by Joe [1997] and Nelsen [2007]. There are large
families of two-dimensional copulas so that modeling dependence between two variables
is relatively easy. The most popular two-dimensional copulas are the Archimedian ones
for which an important literature exists on estimation and goodness of fit; see Joe [1997].
Bedford and Cooke [2001, 2002] have then proposed to construct a multivariate copula
using pair copulas as building blocks. They also give graphical representations involving
a sequence of nested trees, which they called regular vines. This multivariate model,
also called pair-copula construction, allows to decompose a complex multivariate model
into simpler two-dimensional building blocks. An overview is given by Czado [2010]. This
approach is very flexible and allows the dependence between any subset of two variables to
be different. For some estimation techniques of parameters of regular vines, one can refer
to Kurowicka and Cooke [2006]. An alternative to pair copula constructions is proposed
in Hofert [2012] using hierarchical model; ssee Okhrin et al. [2013] for estimation issues.
The nested Archimedian copulas are studied by Hofert and Pham [2013] and used by
Savu and Trede [2010]. A comprehensive overview of dependence in high dimensions can
be found in Embrechts and Hofert [2013].

2.5 Summary

Taking into account the dependence among risky components is crucial to assess the
aggregate risk of a portfolio. We show that subadditivity of a risk measure is justified
from a regulator’s viewpoint. In other words, it is justified that companies receive some
diversification benefits when aggregating risks. However, some care is needed: Diversifi-
cation benefits are often assessed using correlations, but correlation is a poor measure of
dependence. It is merely a single number and not sufficient to describe the complex in-
teraction among risky components. We end Section 2 by discussing how to fully describe
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dependence fully.

3 Overview of current Regulation

The report of Basel Committee [2010a] describes the modeling methods used by financial
firms and regulators in various countries to aggregate risk. It also aims at identifying the
conditions under which these aggregation techniques perform as anticipated in the model
and suggests potential improvements. The report expresses doubts about the reliability of
internal risk aggregation results that incorporate diversification benefits: “Model results
should be reviewed carefully and treated with caution, to determine whether claimed
diversification benefits are reliable and robust.” In this section, we very briefly summarize
their findings as well as those of other regulators.

3.1 Regulatory frameworks

Basel III regulation for banks One calculates a bank’s overall minimum capital
requirement as the sum of capital requirements for the credit risk, operational risk, and
market risk, without recognizing any diversification benefits between the three risk types.
The idea that no diversification corresponds to the worst-case situation of the portfolio is
not entirely correct. Technically, such property is verified when a coherent risk measure
is used but may be violated for other risk measures such as VaR. In other words, it may
be possible to aggregate risks so that the VaR of the aggregated risk is higher than the
sum of the VaRs.

Within the market risk, banks have the choice between two methods. They may
benefit from diversification if they use an internal model approach (IMA). With the
standardized measurement method (SMM), the minimum capital requirement for market
risk is the sum of the capital charges calculated for each individual risk type (interest
rate risk, equity risk, foreign exchange risk, commodities risk and price risk in options).

Canadian Minimum Capital Test (MCT) and Minimum Continuing Capital
and Surplus Requirements (MCCSR) Capital requirements of property and ca-
sualty insurers in Canada are based on the Minimum Capital Test (MCT). The MCT
is a factor-based requirement that aggregates risks as a sum with an explicit credit for
diversification between insurance risk and the sum of credit and market risk, so that the
total capital required for these risks is lower than the sum of the individual requirements
for these risks.

On the other hand, capital requirements of life insurance companies in Canada are
computed according to OSFI’s MCCSR. The MCCSR employs more sophisticated ap-
proaches in some areas. “MCCSR imposes capital requirements for the following risk
components: asset default risk, mortality risk, morbidity risk, lapse risk, disintermedia-
tion risk, and segregated fund guarantee risk” (Basel Committee [2010a]). Some diver-
sification benefits can be incorporated in the computation of mortality risk, morbidity
risk and segregated funds risk but the total MCCSR is calculated as the sum of each risk
without potential reduction due to diversification. Again it is (implicitly) assumed here
that this is the worst possible situation. More information on the MCT and MCCR can
be found on the website of OSFI (www.osfi-bsif.gc.ca).
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Solvency II The Solvency Capital Requirement (SCR) under Solvency II is defined
as the Value-at-Risk (VaR) at 99.5% and a horizon of one year. When aggregating
risks, insurers may benefit from diversification: they have the option to use an internal
model (without any particular method prescribed) or a standard formula. The standard
formula aggregates risks using a correlation matrix (Var-Covar approach) to take into
account dependencies.

Swiss Framework for Insurance Companies Since 2008, all insurers in Switzerland
must use the Swiss Solvency Test (SST). Similarly as in Solvency II, there is a standard
model and the possibility to use an internal model. The standard model considers the
following risks separately: market risk, credit risk (counterparty default), non-life insur-
ance risk, life insurance risk, and health insurance risk. Operational risks do not make
part of the current SST. Diversification between risk categories is recognized in all cases.
Life insurance companies use the Var-Covar aggregation method whereas non-life insurers
aggregate risks more carefully to find the distribution of the aggregate risk and then use
an Expected Shortfall (or TVaR).

US Insurance Risk Based Capital (RBC) Solvency Framework We end our brief
review of regulatory frameworks used across the world in the industry by the US risk-
based capital (RBC). The RBC formula is a standardized system applied to all states in
the US and allowing for an easy comparison across the companies. Each type of insurer
has a separate RBC formula (life, property and casualty, and health). Diversification
benefits are incorporated by computing a covariance matrix among the individual risks
to reduce the overall capital so that it is smaller than the sums of individual risks.

In the calculation of RBC, the formula is a square root of sum of squares. This
amounts to use a very simple assumption for aggregating risks by assuming that they
are fully correlated (correlation equal to one) or independent (zero correlation) (OSFI
[2014]).

3.2 Comparison and Comments on International Regulatory
Frameworks

Generally, regulatory rules incorporate diversification by taking into account some cor-
relation effect to reduce the total capital (at least in some subcategories). Overall, we
observe that regulators all implicitly assume that the sum of the risk numbers is the
worst possible situation. “No diversification benefits” is then synonym to “adding up
risk numbers (VaRs)”.

The easiest method to aggregate risks is the Var-Covar approach (which is explicitly
mentioned in the Solvency II and SST above and also used by the Australian regulator
(OSFI [2014])). It builds on the assumption that the correlation matrix is enough to
describe the dependence and that it is possible to aggregate risks based on this correlation
matrix. Its strength is to be a simple approach but it is merely only a correct approach
for elliptical multivariate distributions such as the Gaussian multivariate distribution.
Furthermore, correlation is a linear measure of dependence and does not capture tail
dependence adequately. Using such a method to aggregate risk may perhaps be fine to
have some idea on the distribution “globally”, but fails when it comes to assess the risk
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in the tail, and note that capital requirements are typically based on tail risk measures
such as Value-at-Risk at 99.5%, which essentially reflects the outcome of a 1-in-200 year
scenario.

Instead of using the Var-Covar approach, one may use copulas to aggregate the indi-
vidual risks. This approach is rather flexible and allows to separate the risk assessment of
the marginal distribution of individual risks and their dependence. By specifying a given
copula to model some dependence, it is then possible to recognize tail dependence among
some risks. However, determining the “right” copula to use is a very hard task that is
prone to significant model risk, as we will see later in this report. Statistical methods
to fit a multivariate model involve large numbers of parameters and copula families. In
addition, understanding the outputs of the model will then require a good expertise of
the copula approach in order to understand the impact of each assumption made on the
dependence. This is a concern and a challenge among institutions.

Another way to capture tail risks and tail dependence is to understand “where the
dependence comes from”, and to model the real risk drivers of the dependence among indi-
vidual risks of the portfolio and understand their interactions. The report of Basel Committee
[2010a] suggest to use “Scenario-based aggregation.”. Aggregation through scenarios
boils-down to determining the state of the firm under specific events and summing prof-
its and losses for the various positions under the specific event. In other words, it means
that one needs to incorporate information that one knows about the dependence in some
specific states.

We propose in Appendix B a method to assess model risk that is somewhat in this
spirit, as it allows to incorporate existing information about the dependence structure
among the risks in some states of the world. The scenario based approach has a clear
advantage in that the multivariate model is then based on some clearly identified risk
drivers (which can then be simulated for instance) and it forces the firm to understand
the chosen multivariate model: it is not anymore a complex set of copulas but depen-
dence among factors is obtained through reasonable factors. As observed in the report of
Basel Committee [2010a], the results of scenario-based aggregation are easier to interpret
with more meaningful economic and financial implications but it requires again a deep ex-
pertise to identify risk drivers, derive meaningful sets of scenarios with relevant statistical
properties, and then use them to obtain a full loss distribution will still be a challenging
task. A lot of the inputs in these kind of models comes from experts’ judgments. Overall
there is no clear unique solution to solve the problem of risk aggregation. Each method
has its pros and cons and may be helpful in given situations and useless in others.

4 Model Risk on Dependence

As discussed extensively in the previous sections, one of the main issues in aggregating
risks arises from the difficulty in modeling the dependence among a large number of
risks, i.e. risk aggregation is prone to model risk. Specifically, we showed in Section 1
that there is no unique way to measure risk, and in Section 2 that correlation is not
enough to measure dependence and that the full information on dependence contains
much more information. However, as it appears in Section 3, regulators over the world
discuss diversification benefits and propose guidelines in estimating them. But there is
no consensus. It turns out that dependence modeling carries a lot of model risk.
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In appendices, we provide specific examples that can be helpful in better under-
standing model risk related to aggregation. Appendix A discusses how to minimize or
maximize a given risk measure ̺(·) of the aggregate risk when the distributions of the
risky components are known but not their interdependence (consistent with the approach
of Embrechts et al. [2013]). This approach is useful to assess model risk on dependence,
which is one of the most important factor in assessing aggregated risk.

However, the bounds on model risk on dependence obtained by the approach de-
scribed Appendix A (see also Embrechts et al. [2013]) are typically too wide to be useful
in practice. They ignore all information on dependence and consider only the information
about the marginal distributions. There are a few papers studying model risk with par-
tial information on the dependence structure. See among others, Cheung and Vanduffel
[2013] for convex ordering bounds with given variance; Embrechts and Puccetti [2006]
for bounds on the distribution of S when the copula of X is bounded by a given copula;
Tankov [2011] for bounds on S when n = 2 and when there are constraints on the cop-
ula; Bernard et al. [2013b] when an upper bound on the variance of the aggregate risk is
imposed, and Bernard et al. [2014a] when high-order moments are given.

In Appendix B, we present a framework which allows practical quantification of model
risk (and was developed in Bernard and Vanduffel [2015a]). Importantly, unlike Ap-
pendix A we no longer ignore the available information on dependence. We assume that
risk modelers have developed an “as good as possible” multivariate model for a certain
portfolio. However, no model is perfect and the extent of misspecification of the proposed
model affects the risk measurement and should be assessed. Our framework includes an
algorithm allowing actuaries to deal with model risk in a very practical way.

These results make it possible to identify risk measures for which additional infor-
mation of a well-fitted multivariate model reduces the model risk significantly, making
them meaningful candidates for use by risk managers and regulators. Our approach may
lead to bounds that are significantly tighter than the (unconstrained) ones available in
the literature, accounting for the available information coming from a multivariate fitted
model and allowing for a more realistic assessment of model risk. However, model risk
remains a significant concern and we recommend caution regarding regulation based on
Value-at-Risk at a very high confidence level since such an assessment is unable to benefit
from careful risk management attempts to fit a multivariate model. For instance, we ob-
serve from numerical experiments that the portfolio VaR at a very high confidence level
(as used in the current Basel regulation) might be prone to such a high level of model
risk that, even if one knows the multivariate distribution nearly perfectly, its range of
possible values remains wide. In fact, one may then not even be able to reduce the model
risk as computed in Embrechts et al. [2013] (see also Appendix A) where no information
on the dependence among the risks is used at all.

We remark that it could be of interest to consider also a “global” constraint to sharpen
the bounds further. A natural global statistic on the distribution of the aggregate risk
is the variance and it would be relatively easy to extend our study by using techniques
similar to those employed in Bernard et al. [2013b] to account for a maximum possible
variance of the aggregate portfolio.

Finally, we assume that the marginal distributions are fixed and known. To capture
the possible uncertainty of the marginal distributions one might consider amplifying their
tails. For example, a distortion (Wang transform) could be applied when re-discretizing

(instead of using f̂i).

16



Superadditivity of VaR: We end this section on an important discussion on con-
sequences of aggregation. Specifically, we discuss the superadditivity of VaR. Comono-
tonicity is the worst-case dependence according to risk averse decision makers, but that it
does not yield the maximum VaR of a portfolio (more details can be found in Appendix
A). The worst case VaR does not readily occur when the risks are perfectly correlated.
As VaR is additive for comonotonic risks, there exists thus a dependence such that

VaRp(X1 +X2 + ...+Xn) > VaRp(X1) + VaRp(X2) + ...+VaRp(Xn) (4.13)

The non-existence of diversification benefits is a situation that is hard to accept by
practitioners. In addition, the use of VaR can lead to inconsistent risk rankings since
the highest possible value of the risk measure does not correspond to the scenario of full
dependence. An important question is when the stated inequality (4.13) is strict, i.e.,
when does one have (strict) superadditivity and how significant is the superadditivity.
It is not difficult to show that one can always find a dependence such that the stated
inequality is strict unless V aRq(Xi) is constant for q > p (see also Bernard, Rüschendorf
and Vanduffel 2013b). This observation allows us to draw the following conclusions:

• When only the marginal distributions are known and the portfolio contains un-
bounded risks then the maximum possible VaR (by finding the worst possible de-
pendence) can be significantly larger than the VaR obtained in the comonotonic
case (in which the VaR is additive). For example, Embrechts et al. [2013] show in
their Figure 5 that for a portfolio of Pareto(2) distributed risks the upper bound
on the VaR is about two times larger than the comonotonic VaR (i.e. when the
marginal risks are assumed to be comonotonic). See also Embrechts et al. [2014].
More generally, Puccetti and Rüschendorf [2012b] show that under some mild con-
ditions the worst Value-at-Risk behaves asymptotically as the worst Tail Value-at-
Risk (TVaR). The intuition behind this result is as follows. The VaR (measured at
some probability level p) of a comonotonic sum is of course just a particular point
on the quantile function of this sum. Now, by changing the comonotonic depen-
dence in the upper tail of the marginal supports (from level p onwards), one is able
to adjust the upper quantiles of the sum (from level p onwards). As the quantile
function is non-decreasing, it is then clear that the highest VaR will be obtained if
one can change the dependence such that the quantile function of the sum becomes
a constant on (p, 1). The constant value is then the maximum VaR and is equal to
the comonotonic TVaR (Bernard et al. 2013b).

Although, the fact that for a given p, some dependence structures yield a VaR larger
than the comonotonic VaR, this may not happen in real-world situations.

• Insurance companies typically have limited liability, hence the VaR cannot be
(strictly) superadditive for high levels of probability (which is the standard case
for solvency assessments). In fact, in this case the VaR obtained by using a partic-
ular model is likely to be subadditive. This feature is important as violation of the
subadditivity property is ground for refuting a risk measure, in particular VaR.

• The situation described above stresses that information on the dependence is crucial
if one wants to build models that provide risk numbers that are trustworthy in the
sense that upper and lower bounds for these numbers stay in some reasonable
range. For example, it might be reasonable to assume that the risks are positively
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dependent, or the variance of the aggregate risk can be estimated accurately from
a statistical analysis of observed losses, or some information on the copula function
might be available. In this regard, the results in the literature on ranges of VaR in
the presence of additional dependence information are more limited and of an ad-
hoc nature. Rüschendorf [1991], Embrechts and Puccetti [2010a], Embrechts et al.
[2013] consider the situation in which some of the bivariate distributions are known,
and Denuit et al. [1999] study VaR bounds assuming that the joint distribution of
the risks is bounded by some distribution. However, the bounds that are proposed
in these papers are often hard to deal with, especially for high-dimensional and
inhomogeneous portfolios, and they do not necessarily sharpen the unconstrained
bounds in a significant way; see also Chernih et al. [2010] for an illustration in
the context of credit risk portfolio modeling. These observations, however, contrast
with the findings of Bernard et al. [2013b]. They consider the presence of a variance
constraint on the portfolio sum as a source of dependence information and show
that doing so can significantly tighten the (unconstrained) VaR bounds.

We recall that the risk measure that is dominantly used in regulatory frameworks is
VaR. For example, the current European regulation of financial institutions (Basel III)
formally relies on the concept of risk weighted assets (RWA), but is essentially a VaR based
framework. Hence, an approach based on risk-weighted assets may not be appropriate
if one needs to aggregate risks to computing VaR of a portfolio. The majority of the
academic literature has always been arguing against the use of VaR because it does not
comply with subadditivity. Recently there has then been a trend in moving away from
VaR and to use TVaR instead; see Embrechts et al. [2014], Basel Committee [2012] and
Basel Committee [2013].

5 Conclusions

Recent turbulent events such as the subprime crisis, have increased the pressure on reg-
ulators and financial institutions to carefully reconsider risk models and to understand
the extent to which the outcomes of risk assessments based on these models are robust
with respect to changes in the underlying assumptions.

Consequently, we have observed a recent and important literature on risk aggregation
and diversification benefits. New approaches for dealing with risk aggregation are to be
expected and the issue of model risk that is inherent in risk aggregation will be the topic
of significant study as well.

Section 4 briefly summarizes the latest developments on the assessment of model
risk. In Appendix B we describe a practical method to assess model risk that takes into
account a typical set of available information. This information may come from statistical
modeling such as a multivariate model fitted on the data at hand (and trusted wherever
there is enough data) but may also arise from scenarios or experts’ opinions. Assume
that some information is known about extreme scenarios. For instance assume that when
one large reinsurer goes bankrupt, then one knows that the insurers that are reinsured by
this reinsurer will be subject to losses and thus will all incur losses simultaneously (thus
showing a comonotonic situation in the tail). If such information is available, it can be
incorporated and it may be well possible to redcue the bounds on Value-at-Risk at high
levels.
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Appendices

A Model Risk of Dependence when Aggregating Risks

The difficulty in modeling the dependence among a large number of risks is a main issue
in aggregating risks, i.e. risk aggregation is prone to model risk. In this appendix, we
discuss how to minimize or maximize a given risk measure ̺(.) of the aggregate risk
when the distributions of the risky components are known but not their interdependence
(consistent with the approach of Embrechts et al. [2013]). In the next section, we will
perform the same exercise but now by assuming that additional dependence information
is available (following the recent method proposed by Bernard and Vanduffel [2015a]).

In what follows, X = (X1, X2, ..., Xd) is the portfolio at hand with given marginal
distributions FX1

(i = 1, 2, ..., d) and we are interested in the properties of ̺(S) where

S =
∑d

i=1 Xi. For convenience, we assume that all means are finite.

Recall from (2.12) that the distributional properties of the portfolio X are completely
specified if one also knows the copula that describes the interaction among the risks of the
portfolio. In this case, the multivariate distribution of X is known and there is clearly
only one possible value for ̺(S). However, when the dependence structure is unspecified,
̺(S) can take a range of possible values depending on the dependence structure chosen.
We aim at finding maximum and minimum possible values for ̺(S) reflecting the degree of
model risk. It is intuitive that for a strong dependence, S becomes a “more variable” risk
and ̺(S) should be at the highest. Reciprocally, if there is a lot of compensation between
the risks then ̺(S) should be small. A well-known device to describe the variability
among risks is the so-called convex order. Mathematically, the convex10 ordering, 6cx

between random variables X, Y is defined as follows

X 6cx Y if E(f(X)) 6 E(f(Y ))

for all convex functions f(·) such that the expectation exists. Note that

E(X) 6cx X (A.14)

and also that X 6cx Y implies that X and Y have the same mean but Y has the largest
variance. Convex order conforms well with the preferences of risk-averse investors and
is very useful to quantify the uncertainty on ̺(S). Precisely, when the risk measure ̺()
is consistent with convex order, then convex order bounds translate into bounds of the
risk measure11. This is the case for the variance or the TVaR for instance12. As for the
Value-at-Risk, this risk measure is not consistent with convex ordering as such, but there
is still a close relationship between bounds on VaR and convex order bounds as we will
also explain hereafter (see also Bernard et al. [2013b]). In any case, it is thus important
to determine upper and lower convex bounds for sums of risks.

10For more details on this ordering in the context of actuarial science, see e.g. Müller and Stoyan
[2002], Denuit et al. [2005], Denuit et al. [1999] and Dhaene et al. [2002].

11Convex order is a natural order in the class of admissible risks. Bernard, Jiang, and Wang [2014b]
introduce the concept of admissible risk to describe all possible aggregate risk S with given marginal
distributions but unknown dependence structure.

12All concave distortion risk measures are consistent with convex order.
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A.1 Convex upper and lower bounds

The convex upper bound for a general number d of individual risks is attained when the
risks are maximally dependent (i.e., co-monotonic) which is an easy to describe depen-
dence structure. More precisely, in the comonotonic case one actually considers

X
d
= (F−1

X1
(U1), F

−1
X2

(U2), ..., F
−1
Xn

(Un)), (A.15)

in which now
U1 = U2 = ... = Un := U, (A.16)

It is intuitively clear that that the variables Xi = F−1
i (U) are fully dependent, as they

are maximally increasing in each other. Hence, we obtain that for any portfolio sum
S :=

∑
i Xi in which the risky components Xi are distributed with Fi,

E(S) 6cx S 6cx

n∑

i=1

F−1
i (U) (A.17)

Proofs for this result (in particular for the second inequality) can be found at many places,
the earliest references being Meilijson and Nádas [1979] and and Rüschendorf [1982].

While the convex upper bound is straightforward to attain, the stated convex lower
bound, i.e., E(S), is not attainable (sharp) in general. In fact, getting convex lower
bounds that are sharp is a very difficult problem, in particular in higher13 dimensions.
Nevertheless, in what follows we show that there exists an algorithm that makes it possible
(at least for portfolios with moderate to high portfolio size, which is the case of interest)
to find a dependence among the risks such that the sum S approximately behave as
the constant E(S). In other words, the algorithm provides approximations for a convex
lower bound of S. Next, we discuss how to find maximum and minimum risk bounds for
portfolios when employing the variance and the Value-at-Risk as a risk measure.

A.2 Rearrangement algorithm

The Rearrangement Algorithm of Puccetti and Rüschendorf [2012a] and further extended
in Embrechts et al. [2013] can be seen as a practical method to construct dependence be-
tween the variables Xj (j = 1, 2, . . . , d), such that the portfolio sum S = X1 + ... + Xd

becomes as small as possible in convex order. We recall that this algorithm is impor-
tant for finding minimum bounds on the variance and Tail-Value-at-Risk (the maximum
bounds are easy to find and follow from comonotonicity in this case), and turns out to
be equally important for finding bounds on Value-at-Risk although VaR does not satisfy
convex order.

Without loss of (practical) generality we assume that the variables Xj are discretized

13For d = 2, the convex lower bound is obtained for X1 = F−1

1
(U) and X2 = F−1

2
(1 − U) as studied

by Denuit et al. [1999] and Tankov [2011] and for d > 3 see Bernard et al. [2014b] for some results.
In fact, the existence of a sharp lower bound is closely related to the concept of complete mixability
(Wang and Wang [2011]) as we explain further in the text; see also Dhaene et al. [2002], Wang and Wang
[2011], Embrechts et al. [2013], Wang et al. [2013] for more background and more mathematical results.
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and take n values that are put in a matrix A randomly14:

A =




x11 x12 ... x1d

x21 x22 ... x2d
...

...
...

...
xn1 xn2 ... xnd


 . (A.18)

The matrix A can be seen as a representation of a possible multivariate structure for X =
(X1, X2, ..., Xd) . Importantly, we do not change the respective marginal distributions of
Xj (j = 1, 2, ..., d) by rearranging the outcomes within a column but only the dependence
between the Xjs.

1. For i from 1 to d, Make the ith column antimonotonic with the sum of the other
columns.

2. Start again from column 1, and make it antimonotonic with the sums of the columns
from 2 to d.

At each step of this algorithm, we make the j−th column antimonotonic with the
sum of others, so that the columns, say Xj before rearranging, and X̃j after rearranging,
verify obviously

var

(
d∑

i=1

Xi

)
> var

(
X̃j +

∑

i 6=j

Xi

)
.

Indeed,

var

(
d∑

i=1

Xi

)
= var

(
Xj +

∑

i 6=j

Xi

)

and its minimum when Xj is antimonotonic with
∑

i 6=j Xi. At each step of the algorithm

the variance decreases15, it is bounded from below (by 0) and thus converges to a limit
ℓ > 0 (convergence of a monotone sequence of real numbers). If the variance becomes
zero, we have found a perfect mixability situation, i.e., the dependence is such that the
sum becomes a constant and thus is as convex small as possible (see (A.14)). Otherwise,
the algorithm will converge to a local minimum. There is then no guarantee that this
minimum is really the minimum of the variance of the sum optimized over all dependence
structure, as this minimum may depend on the starting point. However, in practice, it
turns out that the convergence is very fast and one typically approximates the situation
of complete mixability in a few iterations (unless the portfolio size is very small). In
particular, the algorithm works remarkably well for the case of a homogeneous portfolio
(in which all Xj have the same distribution).

Remark A.1. The algorithm as described above will always stop in a situation where each
column is antimonotonic with the others.16

14For example, we may put in each column of the matrix A the elements in increasing order, in which
case we work with a comonotonic structure as the start situation (yielding a portfolio sum that is largest
possible in convex order).

15Note that the situation in which all the columns are antimonotonic with the sum of all others is an
obvious necessary condition to have a dependence structure that minimize the variance.

16At each step of the algorithm, if a column is not antimonotonic with the sum of the others, then

21



A.3 Example of Application of the RA

To illustrate the algorithm presented above, we show a very simple example based on a
matrix containing 8 rows and 3 columns (i.e., we consider a portfolio containing three
risks that take values under eight scenarios) that we report in a matrix similar to the
general case given by (A.18) 



3 4 1
2 1 1
0 3 2
1 2 1
0 4 2
1 0 1
3 1 2
4 2 3




. (A.19)

Here, we start from the comonotonic structure and apply the RA sequentially as
described in the above algorithm and we find (i.e., by applying sequentially the RA on
the first, second and third column) that




3 4 1
2 1 1
0 3 2
1 2 1
0 4 2
1 0 1
3 1 2
4 2 3




⇒




1 4 1
3 1 1
0 3 2
3 2 1
0 4 2
4 0 1
2 1 2
1 2 3




⇒




1 4 1
3 2 1
0 4 2
3 2 1
0 3 2
4 0 1
2 1 2
1 1 3




⇒




1 4 1
3 2 1
0 4 1
3 2 1
0 3 2
4 0 2
2 1 2
1 1 3




. (A.20)

Note that in the last matrix, we find indeed that each column is antimonotonic with the
sum of the two others.

A.4 Model risk on dependence on variance

Proposition A.2 (Bounds on the variance of
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a portfolio

with respective marginal distribution Fi. Let S =
∑d

i=1 Xi. We have:

var (E(S)) = 0 6 var (S) 6 var

(
d∑

i=1

F−1
i (U)

)
.

in which U is random variable that is uniformly distributed on (0,1).

Proposition A.2 is a straightforward consequence of the fact that variance is consistent
with convex order and the convex ordering relation (A.17). Hence, the lower bound that

it is rearranged to make it antimonotonic. Doing so implies that the variance decreases strictly (as the
antimonotonicity is the unique dependence structure that attains the minimum variance). The matrix
has a finite size and therefore there is a finite number of possible rearrangements of this matrix and
therefore the variance can only decrease strictly a finite number of times. If at some point for each
column, the variance does not change, it means that each column is antimonotonic with the sum of the
others and therefore the algorithm has stopped.
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we propose here corresponds to the case in which the portfolio sum is constant, i.e. we
have the situation of complete mixability as in Wang and Wang [2011]. In this case,
we say that the stated lower bound is “sharp”, as there exists no dependence structure
among the risks Xi such that the sum is constant and exhibits zero variance exactly. As
explained above, the RA attempts to achieve this situation but this is not always possible
in which case the stated lower bound in Proposition A.2 is not sharp. In any case, the
RA can be seen as a method to get an approximation for the sharp convex lower bound.

Let us illustrate these bounds with the example of 8 observations presented above.
The maximum variance is obtained when the risks exhibit a comonotonic dependence
(see (A.19)) and we find




4 4 3
3 4 2
3 3 2
2 2 2
1 2 1
1 1 1
0 1 1
0 0 1




S :=




11
9
8
6
4
3
2
1




.

As for the minimum variance, after applying the RA in (A.20) we find as output,




1 4 1
3 2 1
0 4 1
3 2 1
0 3 2
4 0 2
2 1 2
1 1 3




S :=




6
6
5
6
5
6
5
5




.

We see that the lower bound in Proposition A.2 is not attained in this particular case,
i.e., there will be no dependence structure among X1, X2 and X3 such that the sum is
constant. However, the output of the RA can still be seen as a very good approximation
for the sum that is smallest possible with respect to convex order. In other words, the
algorithm makes it possible to find approximate (sharp) lower bounds for the variance.

A.5 Model risk on dependence on VaR

As comonotonicity is the worst-case dependence according to risk averse decision makers,
it is intuitive that, similar to the case of the variance, this dependence yields the maximum
VaR of a portfolio. We will see however that this intuition is wrong in general. Let us
first observe that for any sum S =

∑d
i=1(Xi) and 0 < p < 1,

VaRp (S) 6 TVaRp (S) (A.21)

6 B = TVaRp

(
d∑

i=1

F−1
i (U)

)
(A.22)
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Similarly, one finds that

A := LTVaRp

(
d∑

i=1

F−1
i (U)

)
6 VaRp (S) (A.23)

where we have defined the left Tail Value-at-Risk (LTVaR) at level p (0 < p < 1) as

LTVaRp(Xi) =
1

p

∫ p

0

VaRu[Xi]du. (A.24)

Note that for TVaR and LTVaR,

(L)TVaRp

(
d∑

i=1

F−1
i (U)

)
=
∑

i

(L)TVaRp(F
−1
i (U)) (A.25)

In summary, we then obtain the following result.

Theorem A.3 (Bounds on the VaR of
∑d

i=1 Xi.). Let (X1, X2, ..., Xd) be a portfolio with

respective marginal distribution Fi. Let S =
∑d

i=1 Xi and p ∈ (0, 1). Then,

n∑

i=1

LTVaRq(F
−1
i (U)) 6 VaRq

(
d∑

i=1

Xi

)
6

n∑

i=1

TVaRq(F
−1
i (U)). (A.26)

These bounds are given and proved in Bernard et al. [2013b]. The question is then if
these bounds can be sharp. To deal with this problem let us note that

VaRp

(
d∑

i=1

F−1
i (U)

)
6 TVaRp

(
d∑

i=1

F−1
i (U)

)
. (A.27)

Hence, in order to attain the upper bound B, the idea is to start with the comonotonic
dependence and next change it such that the inequality (A.26) turns into an equality.
As TVaRp is the average of all upper VaRqs on the interval [p, 1], it is clear that the

equality is obtained if the VaR of the comonotonic sum
∑d

i=1 F
−1
i (U) becomes constant

on [p, 1] (by changing this comonotonic dependence). Let Gi denote the distribution of Fi

when restricted17 to the upper p-part of Fi. In order to attain the upper bound, one thus
needs to find a dependence between the risks (now with marginal distributions Gi) such
that the corresponding sum becomes constant (i.e., the risks are completely mixing). In
general, the mixing property does not hold and the stated bounds are thus not sharp.
However, it is now clear that (approximations of) sharp VaR bounds are obtained by
finding a dependence between the risks (with marginal distributions Gi) such that the
corresponding sum becomes as convex small as possible (see also Bernard et al. [2013b]).
A similar reasoning shows that in order to reach the stated lower bound as closely as
possible one should change the comonotonic dependence such that the quantile function
of the comonotonic portfolio sum becomes as flat as possible on the interval [0, p].

We build on this idea to propose a practical algorithm to approximate sharp bounds.
Hence, let us show how to find approximate sharp bounds with the discrete example

17Formally, Gi is the distribution of F−1

i (V ), where V is uniformly distributed on [q, 1].
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discussed above when the level p used to assess the VaR is 5/8. Note that we start from
the the comonotonic structure in the matrix.




4 4 3
3 4 2
3 3 2
2 2 2
1 2 1
1 1 1
0 1 1
0 0 1




⇒




4 4 3
3 4 2
3 3 2


 .

We then apply the RA in the three corresponding rows.



4 4 3
3 4 2
3 3 2


 ⇒




4 3 3
3 4 2
3 4 2


 ⇒




4 3 2
3 4 2
3 4 3


 .

So that the sums are respectively 9, 9 and 10 and thus the maximum VaR is 9. To obtain
the minimum VaR, one works on the lower values of each Xi and apply the RA on these
values 



4 4 3
3 4 2
3 3 2
2 2 2
1 2 1
1 1 1
0 1 1
0 0 1




⇒




2 2 2
1 2 1
1 1 1
0 1 1
0 0 1



.

Applying the RA as described above



2 2 2
1 2 1
1 1 1
0 1 1
0 0 1




⇒




2 0 2
1 1 1
1 1 1
0 2 1
0 2 1



.

so that the values of the sums are 4,3,3,3 and 3. Therefore the minimum VaR is 4.

B Model Risk of Dependence when Aggregating Risks

and Model Risk Quantification

In this appendix, we present a framework, which allows practical quantification of model
risk (and was developed in Bernard and Vanduffel [2015a]). We assume that risk mod-
elers have developed an “as good as possible” multivariate model for a certain portfolio
(X1, X2, ..., Xd) . However, no model is perfect and we want to assess to which extent
misspecification of the proposed model affects the risk measurement of S =

∑
i Xi. Im-

portantly, unlike Appendix A we do no longer ignore the available information on depen-
dence. Our framework includes an algorithm allowing actuaries to deal with model risk
in a very practical way as we will show in full details.
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These results make it possible to identify risk measures for which additional informa-
tion of a well-fitted multivariate model reduces the model risk significantly, making them
meaningful candidates for use by risk managers and regulators. For instance, we observe
from numerical experiments that the portfolio VaR at a very high confidence level (as
used in the current Basel regulation) might be prone to such a high level of model risk
that, even if one knows the multivariate distribution nearly perfectly, its range of possible
values remains wide. In fact, one may then not even be able to reduce the model risk as
computed in Embrechts et al. [2013] (see also Appendix A) where no information on the
dependence among the risks is used at all.

The idea pursued in our approach is intuitive and corresponds to real-world situ-
ations. Let us assume that we have observed N d-dimensional vectors of observations
{(x1i, ..., xdi)}i=1,...,N and that a multivariate model has already been fitted to this dataset.
In other words, there is a joint distribution of (X1, X2, ..., Xd) available (benchmark
model). However, we are aware that the model is subject to misspecification, espe-
cially due to lack of data. Hence, we split Rd into two subsets: F will be referred to as
the “fixed” or “trusted” area and U as the “unfixed” or “untrusted”area. U reflects the
area in which the data are not considered trustworthy (rich) enough to conclude that the
fitted model is appropriate (in that area). Note that

R
d = F

⋃
U .

If one has perfect trust in the model, then all observations reside in the “trusted” part
(U = ∅) and there is no model risk. On the contrary, F = ∅ when there is no trust in the
fit of the dependence, which corresponds to the case studied by Embrechts et al. [2013]
(see also Appendix A)

A closely related problem has already been studied for two-dimensional portfolios
(d = 2) when some information on the dependence (copula) is available; see for exam-
ple Tankov [2011], Bernard et al. [2012] and Bernard et al. [2013a]. Tankov [2011] uses
extreme dependence scenarios to find model-free bounds for the prices of some bivariate
derivatives, whereas Bernard et al. [2014] and Bernard et al. [2014]18 use such scenarios
to determine optimal investment strategies for investors with state-dependent constraints.
While both applications show that finding bounds on copulas in the bivariate case can
be of interest, risk management typically involves more than two risks. Unfortunately,
finding bounds on copulas in the general d−dimensional case in the presence of con-
straints is not only more difficult but also less useful for risk management applications.
The reason is that when d > 2, in most cases, the worst copula (under constraints) of a
vector (X1, X2, ..., Xd) does not give rise to the highest possible value of the risk measure
at hand of S =

∑d
i=1 Xi, because the marginal distributions also have an impact; see e.g.

Bernard et al. [2014b] for illustrations of this feature.

In addition, there are very few papers in the literature that deal explicitly with high-
dimensional problems and the presence of (partial) information on the dependence struc-
ture: Rüschendorf [1991], Embrechts and Puccetti [2010b] and Embrechts et al. [2013]
consider the situation in which some of the bivariate distributions are known, Denuit et al.
[1999] study VaR bounds assuming that the joint distribution of the risks is bounded by
some distribution and Bernard et al. [2013b] compute VaR bounds when the variance of
the sum is known. They are able to show how the information on the variance of the

18This paper received the 2015 Redington prize from the SOA.
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aggregate risk allows to reduce the distance between the maximum VaR and the mini-
mum VaR significantly. Moreover, they provide an algorithm (Extended RA) that can be
used by actuaries to assess Value-at-Risk bounds (and thus model risk on Value-at-Risk
assessment) in a very practical way when only the variance of the aggregate risk is known.

The setup in all these papers is sometimes hard to reconcile with the information that
is available in practice; or, it does not make use of all available dependence information.
Furthermore, while the bounds that are proposed in these papers might be sharp (at-
tainable), they are often hard to compute numerically, especially for higher dimensions
with inhomogeneous risks. Note also that the bounds obtained do not always make it
possible to strengthen the unconstrained bounds in a significant way, suggesting that
additional dependence information is needed in order to obtain better bounds; see also
Wang and Wang [2011], Embrechts et al. [2013], Wang et al. [2013] and Bernard et al.
[2014b] for related results.

Hence, in this final section, we study bounds for risk measures of the aggregate risk S
by using information on the multivariate joint distribution of its components Xi (which
embeds information on the dependence) rather than using copula information. We pro-
pose two methods for deriving bounds on risk measures. The first method could be
non parametric, it builds on the RA of Embrechts et al. [2013] and allows to find sharp
bounds. The second method provides analytic, simple bounds but may not be sharp. In
practice, we also show through examples that analytical bounds are close to be sharp.

The outline of this section is as follows. First, we present the practical method using
the RA (Section B.3). This method can be performed directly using the data at hand
(without fitting a model), so that in this case, model risk can be assessed in a fully non-
parametric way. This method builds on the rearrangement algorithm that was recently
developed by Puccetti and Rüschendorf [2012a] and further studied by Embrechts et al.
[2013]. It relies on a discretized version of the problem described above and uses a matrix
representation to approximate the worst case dependence structures. We then give the
analytical form and illustrate them by simulations of N(0,1) risks and Pareto risks in
Section B.4. We provide bounds that can be computed directly (using, for instance, Monte
Carlo simulations) but that may not be sharp. Our numerical results indicate that in high
dimensions the bounds computed using the direct method in Section B.4 are close to the
non-parametric bounds as computed in Section B.3. In other words, while finding sharp
bounds is theoretically a difficult problem, the numerical illustrations suggest that the
algorithm that we propose in Section B.4 leads to nearly sharp bounds. The numerical
results also show that the new bounds typically outperform the (unconstrained) ones
already available in the literature and thus allow for more realistic assessment of model
risk. However, model risk remains a significant concern, especially when using a risk
measure that focuses on “tail type” events, such as the VaR.

B.1 Theoretical Setting and Assumptions

Let (X1, X2, ..., Xd) be some random vector of interest. Let F ⊂ R
d and U =R

d\F . We
assume that we know

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d,

(ii) the distribution of (X1, X2, ..., Xd) | {(X1, X2, ..., Xd) ∈ F}
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(iii) and the probability pf := P ((X1, X2, ..., Xd) ∈ F), as well as pu := P ((X1, X2, ..., Xd) ∈
U) = 1− pf .

The joint distribution of (X1, X2, ..., Xd) is thus not completely specified (unless
F =R

d and U = ∅). Consequently, risk measures (e.g., the VaR) of the aggregate sum∑d
i=1 Xi cannot be computed precisely. In fact, there are many vectors (Y1, Y2, ..., Yd) that

agree with (X1, X2, ..., Xd) for the properties (i), (ii) and (iii) but have a different risk
measure of their sum. In what follows, we are interested in finding the extreme possible
values of the risk measure at hand, as the gap between the minimum and the maximum
can be useful in measuring model risk. Formally, we use the following definition of model
risk. This definition is in the same spirit as in Barrieu and Scandolo [2015].

Definition B.1 (Model risk). Let (X1, X2, ..., Xd) be a random vector satisfying (i), (ii)
and (iii) and assume that one uses a (law-invariant) risk measure ̺(·) to assess the risk
of
∑d

i=1 Xi. Define

̺+F := sup

{
̺

(
d∑

i=1

Yi

)}
, ̺−F := inf

{
̺

(
d∑

i=1

Yi

)}

where the supremum and the infimum are taken over all other (joint distributions of)
random vectors (Y1, Y2, ..., Yd) that agree with (i), (ii) and (iii). The model risk that
one underestimates the risk by computing a direct estimate of ̺(

∑
Xi) in some chosen

benchmark model (i.e., when some multivariate distribution for (X1, ..., Xd) has been
specified) is defined as

̺+F − ̺(
∑n

i=1 Xi)

̺+F
(B.28)

and, similarly, the model risk for overestimation is given as

̺(
∑n

i=1 Xi)− ̺−F
̺−F

. (B.29)

The rest of this section aims at obtaining the maximum and minimum possible values
̺+F and ̺−F of ̺(

∑d
i=1 Xi). The recent literature on model risk estimation has dealt

mainly with the case in which there is full uncertainty on the dependence among the
risks Xi (i = 1, 2, ..., d), i.e., when F = ∅ (Appendix A where we reviewed the work of
Embrechts et al. [2013] with respect to VaR. See also Bernard et al. [2014b] regarding a
convex risk measure. In this section, we consider the case in which information on the
dependence translates into joint distributions that are partially known.

In this respect, it will be useful to consider the indicator variable I corresponding to
the event “(X1, X2, ..., Xd) ∈ F”

I := 1(X1,X2,...,Xd)∈F (B.30)

so that one can express the probabilities that a random vector takes values in F resp.
inU as

pf = P (I = 1) and pu = P (I = 0). (B.31)

Let us also introduce a standard uniformly distributed random variable U independent
of the event “(X1, X2, ..., Xd) ∈ F” (and thus also independent of I) as well as a random
vector (Z1, Z2, ..., Zd) defined by

Zi = F−1
Xi|(X1,X2,...,Xd)∈U

(U), i = 1, 2, ..., d, (B.32)
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where F−1
Xi|(X1,X2,...,Xd)∈U

denotes the (left) inverse of the distribution function

FXi|(X1,X2,...,Xd)∈U(x) := P (Xi 6 x|(X1, X2, ..., Xd) ∈ U).

Note that F−1
Xi|(X1,X2,...,Xd)∈U

(x) can be computed, as the marginal distribution of Xi is

known and the joint distribution of (X1, X2, ..., Xd) is known on F (see the properties (i)
and (ii)). Further, all Zi (i = 1, 2, ..., d) are increasing in the (common) variable U, and
thus (Z1, Z2, ..., Zd) is a comonotonic vector with known joint distribution. Define also

T := F−1∑
i Xi|(X1,X2,...,Xd)∈F

(U). (B.33)

Hence, T is a random variable with distribution F∑
i Xi|(X1,X2,...,Xd)∈F(x).

While most of our results hold generally or can be extended in a straightforward way,
we will focus on bounds for the variance, the VaR and the TVaR (which have been defined
in the previous section in (A.21), (A.22) and (A.24)).

B.2 Practical framework for the non-parametric approach

We follow the same setting as already introduced in Appendix A. We have N observations
of the d-dimensional vector (xi1, xi2, ..., xid) for i = 1, ..., N. Denote by M = (xij) the
corresponding N × d matrix. These N observations may simply be N observed data
vectors or N simulated vector values obtained from a fitted multivariate distribution of
(X1, X2, ..., Xd). In both cases, each observation (xi1, xi2, ..., xid) occurs with probability
1
N

naturally (possibly involving repetitions). We assume that the matrix M contains
enough data to allow for an accurate description of the marginal distributions of Xk (k =
1, 2, ..., d) so that the matrix M can effectively be seen as a representation of the random
vector of interest (X1, X2, ..., Xd). Define SN by SN(i) =

∑d
k=1 xik for (i = 1, 2, ..., N). In

other words, SN can be seen as a random variable that takes the value SN(i) in “state” i
for i = 1, 2, ..., N. In general, it might be difficult to find sharp bounds for risk measures of
S =

∑
i Xi. The purpose of what follows is to deal with this problem using the “sampled”

counterpart SN of S, rather than S itself.

As in the theoretical setting presented above, we suppose that the joint distribution of
(X1, X2, ..., Xd) is not completely specified. In the context of the matrix representationM
for the vector (X1, X2, ..., Xd), we assume that the matrix M is effectively split into two
parts. There is a submatrix FN of trusted observations (xi1, xi2..., xid) and UN consists of
the rest of the observations. In the sequel, the set FN will be referred to as the “fixed” or
“trusted” part and UN as the “untrusted” part. In the case in which one has perfect trust
in all observations, the “untrusted” part contains no elements (UN = ∅) and SN can be
used to assess the risk of S. By contrast, if one has no trust in the observed dependence,
then FN = ∅. In this case, the observations (xi1, xi2, ..., xid) are useful only in modeling
marginal distributions Fk (k = 1, 2, ..., d) and do not allow for conclusions regarding
the dependence. It is then important to observe that rearranging the values xik (i =
1, 2, ..., N) within the k−th column does not affect the empirical marginal distribution of
Xk but only changes the observed dependence (“interaction between elements of different
columns”).

Let us denote by ℓf the number of elements in FN and by ℓu the number of elements
in UN , such that

N = ℓf + ℓu.
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Without any loss of generality, it is convenient to modify the matrix M by changing the
order of the rows so that the “trusted area” corresponds to the ℓf first rows and the
untrusted area corresponds to the last ones. By doing so, we have only reallocated the
states i = 1, 2, ..., N, without impact on the adequacy of M to describe the distributional
(law-invariant) properties of (X1, X2, ..., Xd). Similarly, as per definition of the submatrix
UN , we are allowed to rearrange the values within the columns of UN (and thus within the
corresponding parts of M), as this operation generates a new matrix that is considered as
trustworthy as the initial one (note, indeed, that we do not know the dependence between
the Xi, conditionally on (X1, X2, ..., Xd) ∈ U).

Without loss of generality, we can thus always assume that the matrix UN depicts
a comonotonic dependence (in each column, the values are sorted in decreasing order,
that is, such that xm1k > xm2k > ... > xmℓuk

for all k = 1, 2, ..., d). Finally, for FN

(and thus also for the corresponding part of XN) we can assume that the ℓf observations
(xij1, xij2...xijd) appear in such a way that for the sums of the components, i.e., sj :=
xij1 + xij2 + ...+ xijd ( j = 1, 2, ..., ℓf ), it holds that s1 >s2 >...> sℓf . From now on, the
observed data points are reported in the following matrix M

M =




xi11 xi12 ... xi1d

xi21 xi22 ... xi2d
...

...
...

...
xiℓf 1

xiℓf 2
... xiℓf d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d
...

...
...

...
xmℓu1

xmℓu2
... xmℓud




, (B.34)

where the grey area reflects FN and the white area reflects UN . The corresponding
vectors Sf

N and Su
N consist of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=




s1
s2
...
sℓf

s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d
...

s̃ℓu := xmℓu1
+ xmℓu2

+ ...+ xmℓud




. (B.35)

While s1 >s2 >...> sℓf are trusted, the sums s̃i change when the choice of dependence in
UN is varied. In fact, the set {i1, ..., iℓf} can be seen as the collection of states (scenarios) in
which the corresponding observations are trusted, whereas the set {m1, ...,mℓu} provides
the states in which there is doubt with respect to the dependence structure.

For pedagogical purposes, we now provide a simple example of this setup. It will
be used throughout this section to illustrate each algorithm that we propose. This toy
example is not meant to represent a realistic set of observations since, in true applications,
there would be a large number of observations (hereN = 8) and possibly a large number of
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variables (here d = 3). The eight observations are given as follows, with three observations
trusted (ℓf = 3), which appear in the grey area of the matrix:




3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3




. (B.36)

Without loss of generality we can then consider for further analysis the following
matrix M and the vectors of sums Sf

N and Su
N , as follows:

M =




3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1




, Sf
N =




8
8
3


 , Su

N =




10
7
4
3
1



. (B.37)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8
values), one also has the following representation of SN :

SN = ISf
N + (1− I)Su

N , (B.38)

where I =1 if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used previously (see Definition B.33), whereas Su
N

is a comonotonic sum and corresponds to the sampled version of
∑d

i=1 Zi. In this last
section, we aim at finding worst case dependence structures allowing for a robust risk
assessment of the portfolio sum S (SN). This amounts to rearranging the outcomes in
the columns of the untrusted part UN such that the risk measure at hand for SN becomes
maximized (resp. minimized).

B.3 Bounds on a given risk measure

In this section we discuss the sharpness19 of upper and lower bounds for the three risk
measures defined early, namely the variance, TVaR and VaR.

We discussed analytical bounds and sharpness of these bounds in the previous section
and in particular in Proposition A.2 that gives unconstrained bounds for variance and
Proposition A.3 that gives unconstrained bounds for VaR. They can be naturally extended
to the case under study here with constraints.

19Recall that a bound on a risk measure is “sharp” if there exists a dependence structure among the
risks such that this bound is attained.
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B.3.1 Theoretical Bounds on Variance and Tail Value-at-Risk:

The next proposition gives easy-to-compute upper and lower bounds for the variance of
a portfolio sum

∑d
i=1 Xi.

Proposition B.2 (Bounds on the variance of
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random
vector that satisfies properties (i), (ii) and (iii), and let I and (Z1, Z2, ..., Zd) be defined
as in (B.30) and (B.32). We have:

var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E(Zi)

)
6 var

(
d∑

i=1

Xi

)
6 var

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
.

The proof of Proposition B.2 can be found in Bernard and Vanduffel [2015a]. The
stated upper and lower bounds in Proposition B.2 are intuitive and extend in a natural
way Proposition A.2. When computing the variance of the portfolio sum

∑d
i=1 Xi, one

needs to consider the events (X1, X2, ..., Xd) ∈ F and (X1, X2, ..., Xd) ∈ U separately.
The distribution of

∑d
i=1 Xi is known on the event {(X1, X2, ..., Xd) ∈ F} , but unknown

on the event {(X1, X2, ..., Xd) ∈ U}. On U , one then substitutes sum
∑

i Xi by the
constant

∑
i E(Zi) (to compute the lower bound and thus to minimize variance) and

by the comonotonic sum
∑

i Zi (to compute the upper bound and thus to maximize
variance). Note in particular that when U = ∅, the upper bound is equal to the lower
bound and there is no model risk.

Next, we discuss bounds for the TVaR as they are similar to the variance (because
oth measures are consistent with convex order).

Proposition B.3 (Bounds on the TVaR of
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random
vector that satisfies properties (i), (ii) and (iii), and let I and (Z1, Z2, ..., Zd) as defined
in (B.30) and (B.32). We have that

TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

E(Zi)

)
6 TVaRp

(
d∑

i=1

Xi

)
6 TVaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi

)
.

There is no model risk (the bounds reduce to the same value) when U = ∅.
Some of the bounds stated in Propositions B.2 and B.3 can be sharp. In particular,

the upper bounds for the variance and for the TVaR stated in propositions B.2 and B.3
are sharp, without further conditions. Note, indeed, that the multivariate vector

(IX1 + (1− I)Z1, IX2 + (1− I)Z2, ..., IXd + (1− I)Zd) (B.39)

satisfies conditions (i) and (ii). In contrast, the stated lower bounds may not be sharp
because IXi + (1 − I)E(Zi) is usually not distributed with Fi (i = 1, 2, ..., d). In order
to get close to the stated lower bounds, one should try to modify the dependence of the
vector (Z1, Z2, ..., Zd) such that Z1 + Z2 + ... + Zd becomes constant (and thus equal to
E(Z1) + E(Z2) + ... + E(Zd)). We use this insight to propose an algorithm below that
makes it possible to approximate the sharp bounds when the risk measure used is the
standard deviation or the TVaR.
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B.3.2 Practical Bounds on Standard Deviation and TVaR

From Proposition B.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have already initialized a comonotonic struc-
ture (without loss of generality), and the corresponding values of the sums are exactly
the values s̃i (i = 1, 2, ..., ℓu) reported for Su

N in (B.35). The upper bound on variance is
then computed as

1

N




ℓf∑

i=1

(si − s̄)2 +
ℓu∑

i=1

(s̃i − s̄)2


 , (B.40)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N




ℓf∑

i=1

si +
ℓu∑

i=1

s̃i


 . (B.41)

To achieve the minimum variance bound found in Proposition B.2, the values of Su
N must

be as close as possible to each other; ideally, Su
N must be constant. In this regard, the

concept of complete mixability appears as a theoretical device. “Complete mixability”
refers to the dependence structure that makes the sum Su

N constant (Wang and Wang
[2011]). To make this the case, in practice, we apply the rearrangement algorithm of
Embrechts et al. [2013] to the matrix UN (untrusted part) to render it as close as possible
to the complete mixability condition. For completeness, the algorithm is presented in
Section A.2. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows:

1

N




ℓf∑

i=1

(si − s̄)2 +
ℓu∑

i=1

(s̃mi − s̄)2


 , (B.42)

where s̄ is computed as in (B.41).

We illustrate the upper and lower bounds (B.40) and (B.42) for the variance derived
above with the matrix M of observations provided in (B.37). We then use the comono-
tonic structure for the untrusted part of the matrix M and compute the vectors of sums
Sf
N and Su

N as defined above in (B.37). The average sum is s̄ = 5.5. The maximum
variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75.

For the lower bound, we apply the RA to the UN and we obtain

M =




3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1




, Sf
N =




8
8
3


 , Su

N =




5
5
5
5
5



. (B.43)
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With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +
5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5.

Assume that we want to fix the TVaR at probability level p, so that, for ease of
exposition,

k := N(1− p), (B.44)

where k is an integer. Similarly to the case of maximizing the variance, it follows from
Proposition B.3 that in order to obtain the maximum TVaR one needs a comonotonic
scenario on UN . Hence, we merely need to select the k highest values from Sf

N and Su
N as

computed in (B.35). Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order),

and we can then easily compute the maximum TVaR at probability level p. Also, the
minimum TVaR is obtained similarly to the minimum variance. First, apply the RA to
the untrusted part of the matrix UN to render the variance of the (new) sum Su

N as small
as possible. Then, select the k highest values out of Sf

N and Su
N , say: s

∗
1,s

∗
2,...,s

∗
k (ranked

in decreasing order) and compute the minimum TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA, we obtain (B.43) for Su

N and thus the highest three outcomes
that we observe for Su

N and Sf
N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

B.3.3 Theoretical Bounds on Value-at-Risk

VaR is a widely used risk measure in financial services. The following proposition provides
bounds on VaR.

Proposition B.4 (VaR Bounds for
∑d

i=1 Xi). Let (X1, X2, ..., Xd) be a random vector
that satisfies properties (i), (ii) and (iii), and let I, (Z1, Z2, ..., Zd) and U be defined as
in (B.30) and (B.32). Define the variables Li and Hi as

Li = LTVaRU (Zi) and Hi = TVaRU (Zi)

and let

Mp := VaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Hi

)
, mp := VaRp

(
I

d∑

i=1

Xi + (1− I)
d∑

i=1

Li

)

Bounds on the Value-at-Risk of the aggregate risk are given as

mp 6 VaRp

(
d∑

i=1

Xi

)
6 Mp. (B.45)

The proof can be found in Bernard and Vanduffel [2015b]. Initially, the appearance of
variables Li and Hi may seem somewhat odd. However, note that the variables Zi, which
played crucial roles in Propositions B.2 and B.3, can also be expressed as Zi = V aRU (Zi) ,
and here we merely use TV aRU (Zi) and LTV aRU (Zi) instead. Thus, Proposition B.4
has a similar form20 to that of Proposition B.3 resp. B.2, but the bounds proposed are
usually not sharp.21 We observe that in the case of no uncertainty (i.e., U = ∅) there is

20Note that VaR is not consistent with convex order, although there are some connections (see
Bernard et al. [2013b] and Bernard et al. [2012]).

21Note, indeed, that the variables Hi and Li are not distributed as (Xi|I =0).
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no model risk, as I = 1. When there is full uncertainty, i.e., U = R
d, then I = 0, and

we are returned to the unconstrained lower bound on the VaR of a portfolio given in
Proposition A.3 (see also Theorem 2.1 of Bernard, Rüschendorf, and Vanduffel [2013b]).
Note also that the VaR bounds are not sharp in general.

For practical calculations it might be convenient to use an alternative formulation of
the stated VaR bounds.

Proposition B.5 (Alternative formulation of the VaR Bounds). Let (X1, X2, ..., Xd) be
a random vector that satisfies properties (i), (ii) and (iii), and let I, (Z1, Z2, ..., Zd) and
T be defined as in (B.30), (B.32) and (B.33). Recall that pf = P (I = 1). Define

α∗ := inf

{
α ∈ (α1, α2) | VaRα(T ) > TVaR p−pfα

1−pf

(
d∑

i=1

Zi

)}
,

where α1 = max
{
0,

p+pf−1

pf

}
and α2 = min

{
1, p

pf

}
. Then, for p ∈ (0, 1) ,

Mp =





TVaR p−pfα∗

1−pf

(∑d
i=1 Zi

)
if

p+pf−1

pf
< α∗ <

p
pf

VaRα∗
(T ) if α∗ =

p
pf

max

{
VaRα∗

(T ),TVaR p−pfα∗

1−pf

(∑d
i=1 Zi

)}
if α∗ =

p+pf−1

pf
.

(B.46)

The expressions for the lower bound mp are obtained by replacing, in the above state-
ments,“TVaR” with “LTVaR”.

The proof of Proposition B.5 is provided in the appendix of Bernard and Vanduffel
[2015a]. We can illustrate Proposition B.5 in a discrete setting, in which the probability
space Ω has N states. Assume that the event {(X1, ..., Xd) ∈ F} corresponds to the
set {ω1, ..., ωℓf}, whereas {(X1, ..., Xd) /∈ F} corresponds to the set {ωℓf+1, ..., ωℓf+ℓu}
with ℓf + ℓu = N (N is the number of states). Then, pf =

ℓf
N

and pu = ℓu
N
. Assume

that
∑d

i=1 Zi takes ℓu values s̃1 > s̃2 > ... > s̃ℓu , and that T then takes ℓf values
s1 > s2 > ... > sℓf . Specifically, assume N = 8, ℓf = 3, ℓu = 5, s1 = 8 > s2 = 8 > s3 = 3
and s̃1 = 10 > s̃2 = 7 > s̃3 = 4 > s̃4 = 3 > s̃5 = 1, pf = 3/8 and pu = 5/8. For p = 5/8,
we apply (B.46) in proposition B.5 and find that α∗ = 0.75 and that the maximum
VaRp is equal to TV aR0.55(

∑
Zi) = 8. These values will be confirmed by the algorithm

described below.

B.3.4 Practical Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly
to the matrix M of the observed data, and thus leads to non-parametric bounds on the
VaR. Recall that the first ℓf rows of matrix M correspond to FN , whereas ℓu denotes

the number of rows of UN (N = ℓf + ℓu). In the algorithm, we also make use of Sf
N and

Su
N , which we treat as random variables. To compute the VaR at probability level p, we

define
k := N(1− p) (B.47)

where we assume that k is an integer.
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The algorithm is based on Proposition B.5 and on the following motivation. Recall
from the discussion of Proposition B.4 that the stated upper and lower VaR bounds are
not sharp in general. Nevertheless, we are able to propose an algorithm to approximate
sharp bounds. We explain this idea further. Hence, let p ∈ (0, 1) and let us observe that,
almost surely,

I

d∑

i=1

Xi + (1− I)
d∑

i=1

Zi 6 I

d∑

i=1

Xi + (1− I)
d∑

i=1

Hi.

In particular,22 for all α, β in [0, 1] such that pfα + (1− pf )β = p,

max

{
VaRα(T ),VaRβ

(
d∑

i=1

Zi

)}
6 Mp = max

{
VaRα∗

(T ),TVaRβ∗

(
d∑

i=1

Zi

)}

(B.48)
where α∗ is defined as in Proposition B.5 and β∗ =

p−pfα∗

1−pf
. The critical issue is to choose

α and β, as well as a dependence between the components of the (comonotonic) vector
(Z1, Z2, ..., Zd), such that the inequality (B.48) turns into an equality. Such an equality
is clearly obtained when taking β = β∗ (thus α∗ = α) and a dependence in the vector
(Z1, Z2, ..., Zd) such that

VaRβ∗

(
d∑

i=1

Zi

)
= TVaRβ∗

(
d∑

i=1

Zi

)
. (B.49)

Hence, the best approximation for the sharp bound for VaRp

(∑d
i=1 Xi

)
is likely to occur

when the quantile (VaR) function of the
∑d

i=1 Zi can be made (nearly) flat on [β∗, 1]. In
cases in which this feature cannot be (nearly) obtained, it cannot be excluded that better
approximations can be found (for example, if the quantile function

∑d
i=1 Zi can be made

flat on another interval [β, 1] in which β is close to β∗). Similar reasoning shows that in
order to reach the stated lower bound as closely as possible one should make the quantile
function of the portfolio sum as flat as possible on the interval [0, β∗]. We build on this
idea to propose a practical algorithm to approximate sharp bounds below.

Here, Sf
N plays the role of T and Su

N plays the role of
∑d

i=1 Zi (see also (B.38)).

Without loss of generality, assume that Sf
N takes values s1 > s2 > ... > sℓf .

Algorithm for computing the maximum VaR

1. Recall that pf =
ℓf
N
. Compute m1 := max{0, ℓf − k} (so that α1 = m1

ℓf
=

max{0, p+pf−1

pf
}) and m2 := min{ℓf , N − k} (then α2 =

m2

ℓf
= min{1, p

pf
}).

2. Compute α∗ where

α∗ := inf

{
α ∈ (α1, α2) | VaRα(S

f
N) > TVaR p−pfα

1−pf

(Su
N)

}
.

3. Apply the RA to the first ⌊(1− β∗)ℓu⌋ rows of the untrusted part UN of the matrix
M, where β∗ =

p−pfα∗

1−pf
and where ⌊·⌋ denotes the floor of a number. Observe that

⌊(1− β∗)ℓu⌋ = k +m∗ − ℓf where m∗ := ⌊α∗ℓf⌋ and note that m1 6 m∗ 6 m2.

22See Bernard and Vanduffel [2015a] for ore details and intuition on the proof of this result.
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4. By abuse of notation, denote the rearranged sums in the untrusted part as Su
N .

This is the dependence that potentially achieves the maximum VaR by making
TV aR ℓu−b∗

ℓu

(Su
N) as close as possible to V aR ℓu−b∗

ℓu

(Su
N). To compute this maximum

possible VaR, calculate all (row) sums for UN and FN and sort them from maximum
to minimum value, s̃1 > s̃2 > ... > s̃k > ... > s̃N . Then, the VaR is s̃k.

The above algorithm is a quick way to derive potentially attainable bounds for VaR of
the aggregate risk. It requires running the rearrangement algorithm only once. However,
as the RA will rarely generate a perfectly constant sum on the area where it is applied, it
is possible that a better bound might be obtained by applying step 3 to the first k+m−ℓf
rows of the UN for some other m ( m1 6 m 6 m2).

Illustration of the algorithm for obtaining the maximum VaR in the example with d =
3, N = 8, k = 3 with the same matrix M given in (B.37) so that ℓf = 3 and ℓu = 5. In
this case, α∗ = 0.75, so the theoretical maximum VaR is equal to TVaR p−pfα∗

1−pf

= 8. In

the algorithm, m∗ = ⌊α∗ℓf⌋ = ⌊2.25⌋ = 2 and the maximum VaR is obtained for m∗ = 2
(that is, by applying the RA to the first k+m∗− ℓf = 2 rows of the untrusted portion of
the matrix). By going through all possible values of m, we show below that this is indeed
the optimal value.

We find for the minimum and maximum value for m,

m1 = max(0, 0) = 0,m2 = min(3, 8− 3) = 3,

so that the number of rows to which one can consider applying the RA is between 0 and
3, as

k +m1 − ℓf = 0, k +m2 − ℓf = 3.

The first VaR that we compute by taking three rows of Su
N (m+ k− ℓf = 3 with m = 3)

is equal to VaR=7:

M =




3 4 1
0 2 1
2 4 2
1 3 3
3 2 2
4 1 2



, Sf

N =




8
8
3


 , Su

N =




7
7
7


 .

The second value is equal to VaR=8 (m + k − ℓf = 2 with m = 2) and is already the
maximum possible value:

M =




3 4 1
0 2 1
2 4 2
3 3 3
4 2 2



, Sf

N =




8
8
3


 , Su

N =

[
9
10

]
.

Indeed, one more iteration (m = 1) will not change the value of the VaR, and two more
iterations (m = 0) will lead to a lower number.

The algorithm for computing the minimum VaR is similar to that for the maximum,
where TVaR is replaced by LTVaR to compute α∗. Details and an example can be found
in Bernard and Vanduffel [2015a],
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B.4 Example of Bounds for risk measures of portfolios with
dependence uncertainty by Monte Carlo

We discuss how to simulate the analytical bounds for variance, TVaR and VaR (obtained
in the respective Propositions B.2, B.3 and B.5 with some examples.

B.4.1 Bounds on Variance

The upper and lower bounds for the variance in Proposition B.2 can be computed by
numerical integration or by Monte Carlo simulation. If the number of dimensions d is
high then it is clear that the best approach to computing the theoretical bounds is to
use Monte Carlo techniques (using simulations from the fitted multidimensional model
on F). We illustrate Proposition B.2 with an example. In this respect, it is appropriate
to use the standard deviation as the risk measure and not the variance (it is clear that
in this instance the bounds are the square roots of those presented in Proposition B.2).
Doing so makes it possible to compare fairly the results of this example with those of
subsequent examples that use TVaR or VaR as the risk measure.

Example B.6 (multivariate normal distribution as a benchmark model). Assume that
(X1, ..., Xd) is a random vector with standard normally distributed marginals. Further-
more, the joint distribution of (X1, ..., Xd) is assumed to be a multivariate standard nor-
mal distribution with correlation parameter23 ̺ on the subset F := [qβ, q1−β]

d ⊂ R
d (for

some β < 50%), where qγ denotes the quantile of the standard normal random variable
at probability level γ. In Table B.1, we assume that d = 20, and we provide the upper
and lower bounds for the standard deviation of the portfolio sum for various confidence
levels β and correlation levels ρ. The first column (β = 0%) provides results for cases
in which there is no uncertainty on the multivariate distribution; as such, it provides a
benchmark for assessing model risk (see Definition B.1). The last column (β = 50%)
provides bounds for cases in which there is full uncertainty on the dependence; as such,
it corresponds to the situation that is traditionally studied in the literature.

U = ∅ U = R
d

F = [qβ, q1−β]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 50%

ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (1.23 , 19.3) (0 , 20)
ρ = 0.1 7.62 (7.41 , 8.26) (6.23 , 11.7) (1.69 , 19.2) (0 , 20)
ρ = 0.5 14.5 (13.8 , 14.6) (11.1 , 15.4) (3.74 , 18.6) (0 , 20)

Table B.1: In the first column we report the standard deviation of
∑20

i=1 Xi under the
assumption of multivariate normality (no dependence uncertainty, i.e., U = ∅). Lower
and upper bounds of the standard deviation of

∑20
i=1 Xi are reported as pairs (̺−F , ̺

+
F)

for various confidence levels β. We use 3,000,000 simulations. All digits reported in the
table are significant.

One observes from Table B.1 that the impact of model risk on the standard devia-
tion can be substantial even when the joint distribution (X1, ..., Xd) is almost perfectly
known, i.e., when β is close to zero (pu is close to 0). Consider for instance β = 0.05%

23A multivariate standard normal distribution with correlation coefficient ρ is such that the pairwise
correlation is ρ for all pairs (Xi, Xj) with i 6= j.
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and ρ = 0. In this case, pu = 1 − 0.99920 ≈ 0.02, and we find that using a multivariate
normal assumption (as the benchmark) might underestimate the standard deviation by
(5.65-4.47)/4.47=26.4% and overestimate it by (4.47-4.4)/4.4=1.6%. It thus seems that
the assumption of multivariate normality is not particularly robust against misspecifi-
cation. Here, in fact, it clearly gives rise to a situation in which one is more likely to
underestimate risk than to overestimate it. Furthermore, the example shows that adding
some partial information on the dependence (i.e., when β < 50%) can change the un-
constrained bounds (case in which β = 50%) and confirms that dependence is important
when assessing the risk of a portfolio. For instance, when β = 0.5% and ρ = 0, one
has that pu = 1 − 0.9920 ≈ 0.18 and the unconstrained upper bound for the standard
deviation shrinks by approximately 50% (from 20 to 10.6).

U = ∅ U = R
d

pu β = 0% β = 0.05% β = 0.5% β = 5% β = 50%
ρ = 0 0 0.02 0.18 0.88 1
ρ = 0.1 0 0.02 0.18 0.87 1
ρ = 0.5 0 0.016 0.12 0.66 1

Table B.2: Probability pu that (X1, ..., Xd) takes values outside the d−cube [qβ, q1−β]
d,

for a confidence level β and a correlation coefficient ρ. We use 3,000,000 simulations.

In Table B.2 we report, for the levels of correlation ρ and confidence levels β used
in Table B.1, the probability pu that (X1, ..., Xd) takes values outside the d−cube F =
[qβ, q1−β]

d. Doing so allows us to better interpret the results of Table B.1 and will also be
useful in understanding the effect of the choice of another design for the trusted area F .

In the above example, the trusted area is based solely on the use of the marginal
densities, N(0, 1). More generally, assume that marginal densities have been fitted to

empirical densities f̂i for i = 1, ..., d, respectively. Then, F is defined as

F :=
{
(x1i, ..., xdi) ∈ R

d / ∀j ∈ {1, 2, ..., d}, f̂j(xji) > ε
}

(B.50)

In the case that the rare events correspond to either the largest or the smallest outcomes
of the risks, this approach is consistent with the use of a d-cube as trusted area. Another
natural criterion by which to determine the trusted part of the multivariate distribution
consists in starting from a given fitted multivariate density f̂ (coming for instance from a
multivariate Gaussian model, a multivariate Student model or a Pair-Copula Construc-
tion model (Aas et al. [2009], Czado [2010])). The trusted area is then based on the
contour levels of the density. We refer to Bernard and Vanduffel [2015a] for more details
on this point. These observations are also intuitive, as the standard deviation is sensitive
to high outcomes and these scenarios occur frequently when considering the upper bound
(as the tail events are then assumed to be fully correlated).

B.4.2 Bounds on TVaR

We now use the same illustrative example for the TVaR and compute the stated bounds
using Monte Carlo simulations.

Example B.7 (multivariate normal distribution as a benchmark model). Table B.3 pro-
vides for various levels of probability level p, confidence level β, and correlation ρ the
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bounds on TVaR. The results are in line with those of the previous example. Model risk
is already present for small levels of β, but at the same time the availability of dependence
information (β < 50%) allows for strengthening the unconstrained bounds (β = 50%)
significantly. Interestingly, the degree of model risk also depends on the interplay be-
tween the probability level p used to assess the TVaR and the degree of uncertainty on
the dependence as measured by β. When p is large (e.g., p = 99.5%), a small propor-
tion of model uncertainty (e.g., β = 0.05%) appears to have a tremendous effect on the
model risk of underestimation. We can explain this observation as follows. The TVaR
is essentially measuring the average of all upper VaRs and its level is thus driven mainly
by scenarios in which one or more outcomes of the risks involved are high. These scenar-
ios, however, are not considered as trustworthy for depicting the (tail) dependence with
negative impact on the level of the TVaR. In fact, for a given level of p the model risk of
underestimation increases sharply with an increase in the level of β and approaches its
maximum already for small to moderate values of β. This effect is further emphasized
when the level of p increases. In other words, the TVaR is highly vulnerable to model
misspecification, especially when it is assessed at high probability levels.

U = ∅ U = R
d

F = [qβ, q1−β ]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 50%

ρ = 0 9.21 (9.12 , 11.6 ) (8.49 , 27.5) (3.36 , 41.3) ( -0.002 , 41.3)
p = 95% ρ = 0.1 15.7 (15.4 , 17.3) (13.5 , 28.4) (4.72 , 41.3) ( 0.004 , 41.3)

ρ = 0.5 29.9 (28.1 , 30.5) (22.9 , 34.0) (10.0 , 41.3) ( -0.002 , 41.3)

ρ = 0 12.9 (12.8 , 30.4) (12.1 , 57.9) (7.52 , 57.9) ( -0.004 , 57.9)
p = 99.5% ρ = 0.1 22 (21.5 , 33.3) (19.0 , 57.8) (10.0 , 57.9) ( -0.002 , 57.9)

ρ = 0.5 42 (37.4 , 47.6) (29.6 , 57.9) (15.2 , 57.9) ( 0.019 , 57.9)

Table B.3: TVaR95% and TVaR99.5% of
∑20

i=1 Xi are reported in the absence of uncertainty
(multivariate standard normal model with U = ∅). Bounds are then given for various
levels of confidence β, correlation ρ and probability p. Bounds are obtained based on
3,000,000 simulations. All digits reported are significant.

Similarly to the case of the standard deviation, one can also use a trusted area that
is based on the contours of the multivariate normal distribution in order to assess the
upper and lower bounds. As the results are similar, we do not report them in detail.

B.4.3 Bounds on Value-at-Risk

We here assess the VaR bounds when the benchmark model is a multivariate normal
distribution.

Example B.8 (Multivariate normal distribution as a benchmark model). The VaR
bounds reported in Table B.4 were obtained within a few minutes, using 3,000,000 Monte
Carlo simulations. We make the following observations. First, model risk is clearly
present even when the dependence is “mostly” known (i.e., β is small). Furthermore, the
precise degree of model error depends highly on the level of the probability p that is used
to assess the VaR. Let us consider the benchmark model with ρ = 0 (the risks are inde-
pendent and standard normally distributed) and β = 0% (no uncertainty). We find that
VaR95%

(∑20
i=1 Xi

)
=

√
20Φ−1(95%) = 7.35 and, similarly, VaR99.5%

(∑20
i=1 Xi

)
= 11.5,
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VaR99.95%

(∑20
i=1 Xi

)
= 14.7. However, if β = 0.05%, then pu ≈ 0.02, and the benchmark

model might underestimate the 95%−VaR by (8.08-7.36)/8.08=8.9% or overestimate it
by (7.36-7.27)/7.27=1.24%. However, when using the 99.5%−VaR, the degree of un-
derestimation may rise to (30.4-11.5)/30.4=62.2%, whereas the degree of overestimation
is equal only to (11.5-11.4)/11.4=0.9%. Hence, the risk of underestimation is sharply
increasing in the probability level that is used to assess VaR.

U = ∅ U = R
d

F = [qβ , q1−β ]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 0.5

p=95% ρ = 0 7.36 ( 7.27 , 8.08 ) ( 6.65 , 27.5 ) ( 0.79 , 41.3 ) ( -2.17 , 41.3 )
p=95% ρ = 0.1 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( 1.51 , 41.2 ) ( -2.17 , 41.3 )
p=95% ρ = 0.5 23.8 ( 22.9 , 24.2 ) ( 18.9 , 30.9 ) ( 6.97 , 41.2 ) ( -2.17 , 41.3 )

p=99.5% ρ = 0 11.5 ( 11.4 , 30.4 ) ( 10.8 , 57.8 ) ( 6.13 , 57.8 ) ( -0.29 , 57.8 )
p=99.5% ρ = 0.1 19.6 ( 19.1 , 31.4 ) ( 16.9 , 57.8 ) ( 8.23 , 57.8 ) ( -0.29 , 57.8 )
p=99.5% ρ = 0.5 37.4 ( 34.3 , 45.1 ) ( 27.4 , 57.8 ) ( 13.5 , 57.8 ) ( -0.29 , 57.8 )

p=99.95% ρ = 0 14.7 ( 14.6 , 71.0 ) ( 13.8 , 71.1 ) ( 9.31 , 71.1 ) ( -0.036 , 71.1 )
p=99.95% ρ = 0.1 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( 12.1 , 71.1 ) ( -0.035 , 71.1 )
p=99.95% ρ = 0.5 47.7 ( 41.3 , 71.1 ) ( 32.3 , 71.1 ) ( 17.2 , 71.1 ) ( -0.036 , 71.1 )

Table B.4: VaR95%, VaR99.5% and VaR99.95% of
∑20

i=1 Xi are reported in the absence of
uncertainty (multivariate standard normal model with U = ∅). Bounds are then given
for various levels of confidence β, correlation ρ and probability p. We use 3, 000, 000
simulations and all digits reported are significant.

Finally, note that when very high probability levels are used in VaR calculations
(p = 99.95%; see the last three rows in Table B.4), the constrained upper bounds are
very close to the unconstrained upper bound, even when there is almost no uncertainty
on the dependence (β = 0.05%). The bounds computed by Embrechts et al. [2013] are
thus nearly the best possible bounds, even though it seems that the multivariate model
is known at a very high confidence level. This implies that any effort to accurately fit a
multivariate model will not reduce the model risk on the risk measure (and the capital
requirement).

Note that when no information on the dependence is available (β = 50%) the upper
and lower bounds stated in proposition B.4 reduce to

∑d
i=1 TVaRp (Xi) and

∑d
i=1 LTVaRp (Xi),

respectively, and coincide with the lower boundA and upper boundB, given by Bernard et al.
[2013b]. Using their formulas for A and B, we find that the bounds on the VaRp of sums
of 20 independent N (0, 1) risks are

A = −20
φ(Φ−1(p))

p
, B = 20

φ(Φ−1(p))

1− p

and we observe that one obtains consistency with the bounds reported in Table B.4. For
example, when p = 95%, we find that (A,B) = (−2.17, 41.25), which conforms with the
numbers in Table B.4.

Example B.9 (Pareto distributed risks). We provide another example with Pareto dis-
tributed risks and we find that the same results can be found. They are even amplified.
We assume the individual risks are all Pareto with parameter θ = 3. We assume that
there are d = 20 risks distributed as a Pareto with parameter θ and that their dependence
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is modeled by a Gaussian copula with parameter ρ (pairwise correlation). Each risk has
the cdf for x > 0,

F (x) = 1− (1 + x)−θ

The Value-at-Risk at level p ∈ (0, 1) is given by

F−1
X (p) = (1− p)−1/θ − 1

Assuming that the trusted zone is based on each marginal being between the quantile of
level 1− β and β respectively

F =
d⋂

k=1

{qβ 6 Xk 6 q1−β}

where
qβ = (1− β)−1/θ − 1

We find from the simulation of n = 3, 000, 000 simulations of a d = 20 Pareto variables
the following results for the bounds on Value-at-Risk.

U = ∅ U = R
d

F = [qβ, q1−β]
d β = 0% β = 0.05% β = 0.5% β = 5% β = 0.5

α=95% ρ = 0 16.6 ( 16 , 18.4 ) ( 13.8 , 37.4 ) ( 8.62 , 61.4 ) ( 7.29 , 61.4 )
α=95% ρ = 0.1 19.7 ( 18.3 , 20.6 ) ( 15.9 , 37.8 ) ( 8.82 , 61.4 ) ( 7.29 , 61.4 )
α=95% ρ = 0.5 28 ( 26.5 , 33.5 ) ( 20.6 , 43.2 ) ( 10.3 , 61.4 ) ( 7.29 , 61.4 )

α=99.5% ρ = 0 25.8 ( 21.5 , 60.7 ) ( 17.5 , 156 ) ( 10.7 , 156 ) ( 9.27 , 156 )
α=99.5% ρ = 0.1 32.5 ( 27.9 , 63 ) ( 21.8 , 156 ) ( 11.6 , 156 ) ( 9.27 , 156 )
α=99.5% ρ = 0.5 61.1 ( 49 , 94.7 ) ( 31.6 , 155 ) ( 14 , 155 ) ( 9.26 , 155 )

α=99.95% ρ = 0 43.5 ( 26.5 , 359 ) ( 20.5 , 360 ) ( 12.4 , 360 ) ( 9.83 , 359 )
α=99.95% ρ = 0.1 51.9 ( 36.3 , 357 ) ( 26.8 , 359 ) ( 13.9 , 358 ) ( 9.82 , 357 )
α=99.95% ρ = 0.5 116 ( 69.6 , 361 ) ( 40.1 , 361 ) ( 16.8 , 359 ) ( 9.83 , 359 )

B.4.4 Further discussion on model risk

Let us consider again a random vector (X1, ..., Xd) having standard normally distributed
marginals all correlated with a coefficient of 10% (benchmark). We now focus on the
model risk for underestimation and overestimation; that is, we consider the quantities

̺+F − ̺(
∑

i Xi)

̺+F
and

̺−F − ̺(
∑

i Xi)

̺−F
, (B.51)

which were introduced in Section B.4 (Definition B.1 and expressions (B.28) and (B.29)).
The risk measure ̺(·) is the VaR and the TVaR, and, for the trusted area F , we consider
the elliptical contours such that P ((X1, ..., Xd) ∈ F) = pf .

In Figure B.3, we represent the risk of underestimating and overestimating VaR and
TVaR, respectively, at various probability levels p using the risk measures (B.51) for model
risk. From Figure B.3, we observe that a slight misspecification of the model already
leads to a potentially significant underestimation of VaR and TVaR. By contrast, the
risk of overestimating appears to be less pronounced. We can explain these observations
as follows. In the benchmark model, the risks Xi (i = 1, 2, ..., d) are assumed to be
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multivariate normally distributed, with a correlation coefficient of only 10%. However, in
the presence of uncertainty the risks are assumed to be fully dependent in the untrusted
area U when calculating the upper bound on TVaR and to behave as a constant when
calculating the lower bound (the portfolio sum is thus also constant in this instance).
The latter situation is closer to the one that is present in the benchmark model, and
therefore the risk of overestimating TVaR is relatively small. Conversely, the risk of
underestimation is rather significant. The same pattern holds true for the bounds on
VaR, as these are based on the TVaR of a comonotonic sum and thus differ from the VaR
under the benchmark model (risks have low correlation).
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Risk of underestimation of TVaR

Risk of overestimation of TVaR
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Figure B.3: We assume that (X1, X2, ...X20) is a multivariate standard distribution with
pair correlation ρ = 0.1. Let pf = 90%. We show the model risk for overestimating or
underestimating VaRp and TVaRp as a function of p.

We also observe that when the probability level p is high, the model risk of under-
estimating VaR appears to be larger than the model risk of underestimating TVaR. We
can explain this remarkable feature as follows. For p sufficiently large (as compared to
1− pu), the worst VaR and the worst TVaR of the portfolio sum are both based on the
untrusted scenarios, as the very largest outcomes for the portfolio sum usually correspond
to the untrusted scenarios. Hence, in this case, the worst VaR and the worst TVaR tend
to be close to each other.24 However, the difference between the modeled TVaR and the
modeled VaR, naturally, remains strictly positive. The two effects together imply that
the model risk of underestimating VaR is more significant than the risk of underestimat-
ing TVaR when p is very large. The example thus suggests that VaR is more sensitive
to model risk than TVaR. It also illustrates that a model may provide a good fit for the
data on the whole but still not be suitable for estimating VaR at high probability levels.

24Puccetti and Rüschendorf (2012a) show that under mild conditions that for a given set of scenarios
the worst Value-at-Risk behaves asymptotically as the worst Tail Value-at-Risk (TVaR).
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and model-free pricing of multi-asset options’ by Tankov (2011). Journal of Applied
Probability, 49(3):866–875, 2012.

Carole Bernard, Yuntao Liu, Niall MacGillivray, and Jinyuan Zhang. Bounds on capital
requirements for bivariate risk with given marginals and partial information on the
dependence. Dependence Modeling, 1:37–53, 2013a.
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