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ABSTRACT

When a risk factor has small covariance with asset returns, risk premia in the linear asset pricing
models are no longer identified. Weak factors, similar to weak instruments, make the usual estima-
tion techniques unreliable. When included in the model, they generate spuriously high significance
levels of their own risk premia estimates, overall measures of fit and may crowd out the impact of
the true sources of risk. I develop a new approach to the estimation of cross-sectional asset pricing
models that: a) provides simultaneous model diagnostics and parameter estimates; b) automati-
cally removes the effect of spurious factors; c) restores consistency and asymptotic normality of the
parameter estimates, as well as the accuracy of standard measures of fit; d) performs well in both
small and large samples. I provide new insights on the pricing ability of various factors proposed in
the literature. In particular, I identify a set of robust factors (e.g. Fama-French ones, but not only),
and those that suffer from severe identification problems that render the standard assessment of
their pricing performance unreliable (e.g. consumption growth, human capital proxies and others).
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Sharpe (1964) and Lintner (1965) CAPM pioneered the class of linear factor models in asset pricing.

Now, decades later, what started as an elegant framework has turned into a well-established and

successful tradition in finance. Linear models, thanks to their inherent simplicity and ease of

interpretation, are widely used as a reference point in much of the empirical work, having been

applied to nearly all kinds of financial assets1. In retrospect, however, such heavy use produced a

rather puzzling outcome: Harvey, Liu, and Zhu (2013) list over 300 factors proposed in the literature,

all of which have been claimed as important (and significant) drivers of the cross-sectional variation

in stock returns2.

One of the reasons for such a wide range of apparently significant risk factors is perhaps a simple

lack of model identification, and consequently, an invalid inference about risk premia parameters.

As pointed out in a growing number of papers (see e.g. Jagannathan and Wang (1998), Kan

and Zhang (1999b), Kleibergen (2009), Kleibergen and Zhan (2013), Burnside (2015), Gospodinov,

Kan, and Robotti (2014a)), in the presence of factors that only weakly correlate with assets (or do

not correlate at all), all the risk premia parameters are no longer strongly identified and standard

estimation and inference techniques become unreliable. As a result, identification failure often leads

to the erroneous conclusion that such factors are important, although they are totally spurious by

nature. The impact of the true factors could, in turn, be crowded out from the model.

The shrinkage-based estimators that I propose (Pen-FM and Pen-GMM, from the penalised ver-

sion of the Fama-MacBeth procedure or GMM, accordingly), not only allow to detect the overall

problem of rank-deficiency caused by irrelevant factors, but also indicate which particular vari-

ables are causing it, and recover the impact of strong risk factors without compromising any of its

properties (e.g. consistency, asymptotic normality, etc).

My estimator can bypass the identification problem because, in the case of useless (or weak) fac-

tors, we know that it stems from the low correlation between these variables and asset returns. This,

1Notable examples are the 3-factor model of Fama and French (1992), Fama and French (1993); the conditional
CAPM of Jagannathan and Wang (1996); the conditional CCAPM of Lettau and Ludvigson (2001b), the Q1-Q4
consumption growth of Jagannathan and Wang (2007), the durable/nondurable consumption CAPM of Yogo (2006);
the ultimate consumption risk of Parker and Julliard (2005); the pricing of currency portfolios in Lustig and Verdelhan
(2007) and Lustig, Roussanov, and Verdelhan (2011); and the regression-based approach to the term structure of
interest rates in Adrian, Crump, and Moench (2013)

2In the context of predictive regressions, Novy-Marx (2014) recently demonstrated that many unconventional
factors, such as the party of the U.S. President, sunspots, the weather in Manhattan, plannet location and the El-
Nino phenomenon have a statistically significant power for the performance of many popular trading strategies, such
as those based on market capitalisation, momentum, gross profitability, earnings surprises and others.

2



in turn, is reflected in the regression-based estimates of betas, asset exposures to the corresponding

sources of risk. Therefore, one can use the L1−norm of the vector of β̂’s (or related quantities)

to assess the overall factor strength for a given cross-section of returns, and successfully isolate

the cases when it is close to zero. Consequently, I modify the second stage of the Fama-MacBeth

procedure3 (or the GMM objective function) to include a penalty that is inversely proportional to

the factor strength, measured by the L1−norm of the vector β̂.

One of the main advantages of this penalty type is its ability to simultaneously recognise the

presence of both useless and weak factors4, allowing Pen-FM(GMM) to detect the problem of both

under- and weak identification. On the contrary, the critical values for the tests often used in

practice5 are all derived under the assumption of strictly zero correlation between the factor and

returns. As a result, faced with a weak factor, such tests tend to reject the null hypothesis of betas

being jointly zero; however, risk premia parameters still have a nonstandard asymptotic distribution,

should the researcher proceed with the standard inference techniques6.

Combining model selection and estimation in one step is another advantage of Pen-FM(GMM),

because it makes the model less prone to the problem of pretesting, when the outcome of the initial

statistical procedure and decision of whether to keep or exclude some factors from the model further

distort parameter estimation and inference7.

Eliminating the influence of irrelevant factors is one objective of the estimator; however, it

should also reflect the pricing ability of other variables in the model. I construct the penalty in

such a way that does not prevent recovering the impact of strong factors. In fact, I show that Pen-

FM(GMM) provide consistent and asymptotically normal estimates of the strong factors risk premia

that have exactly the same asymptotic distribution as if the irrelevant factors had been known and

3The problem of identification is not a consequence of having several stages in the estimation. It is well known
that the two-pass procedure gives exactly the same point estimates as GMM with the identity weight matrix under a
particular moment normalisation.

4If the time series estimates of beta have the standard asymptotic behaviour, then for both useless (β = 0n) and
weak (β = B√

T
) factors L1−norm of β̂ is of the order 1√

T
.

5Wald test for the joint spread of betas or more general rank deficiency tests, such as Cragg and Donald (1997),
Kleibergen and Paap (2006)

6A proper test for the strength of the factor should be derived under the null of weak identification, similar to the
critical value of 10 for the first stage F -statistics in the case of a single endogenous variable and 1 instrument in the
IV estimation, or more generally the critical values suggested in Stock and Yogo (2005)

7See, e.g. simulation designs in Breiman (1996) highlighting the model selection problem in the context of linear
regressions and the choice of variables, Guggenberger (2010) for the impact of Hausman pretest in the context of panel
data, and Berk, Brown, Buja, Zhang, and Zhao (2013) for recent advances in constructing confidence bounds, robust
to prior model selection
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excluded from the model ex ante. Further, I illustrate, with various simulations, that my estimation

approach also demonstrates good finite sample performance even for a relatively small sample of

50-150 observations. It is successful in a) eliminating spurious factors from the model, b) retaining

the valid ones, c) estimating their pricing impact, and d) recovering the overall quality of fit.

I revisit some of the widely used linear factor models and confirm that many tradable risk factors

seem to have substantial covariance with asset returns. This allows researchers to rely on either

standard or shrinkage-based estimation procedures, since both deliver identical point estimates and

confidence bounds (e.g. the three-factor model of Fama and French (1992), or a four-factor model

that additionally includes the quality-minus-junk factor of Asness, Frazzini, and Pedersen (2014)).

There are cases, however, when some of the factors are particularly weak for a given cross-section

of assets, and their presence in the model only masks the impact of the true sources of risk. The new

estimator proposed in this paper allows then to uncover this relationship and identify the actual

pricing impact of the strong factors. This is the case, for example, of the q-factor model of Hou,

Xue, and Zhang (2014) and the otherwise ‘hidden’ impact of the profitability factor, which I find

to be a major driving force behind the cross-sectional variation in momentum-sorted portfolios.

Several papers have recently proposed8 asset pricing models that highlight, among other things,

the role of investment and profitability factors, and argue that these variables should be important

drivers of the cross-sectional variation in returns, explaining a large number of asset pricing puzzles9.

However, when I apply the q-factor model (Hou et al. (2014)) to the momentum-sorted cross-

section of portfolios using the Fama-MacBeth procedure, none of the variables seem to command a

significant risk premium, although the model produces an impressive R2 of 93%. Using Pen-FM on

the same dataset eliminates the impact of two out of four potential risk drivers, and highlights a

significant pricing ability of the profitability factor (measured by ROE), largely responsible for 90%

of the cross-sectional variation in portfolio returns. Point estimates of the risk premia (for both

market return and ROE), produced by Pen-FM in this case are also closer to the average return

generated by a tradable factor, providing further support for the role of the firm’s performance

in explaining the momentum effect, as demonstrated in Hou et al. (2014). The importance of this

8E.g. Chen, Novy-Marx, and Zhang (2011), Fama and French (2015) and Hou et al. (2014)
9There is vast empirical support for shocks to a firm’s profitability and investment to be closely related to the com-

pany’s stock performance, e.g.Ball and Brown (1968), Bernand and Thomas (1990), Chan, Jegadeesh, and Lakonishok
(1996), Haugen and Baker (1996), Fairfield, Whisenant, and Yohn (2003), Titman, Wei, and Xie (2004), Fama and
French (2006), Cooper, Gulen, and Schill (2008), Xing (2008), Polk and Sapienza (2009), Fama and French (2015)
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factor in explaining various characteristics of stocks is also consistent with the findings of Novy-Marx

(2013), who proposes an alternative proxy for expected profitability and argues that it is crucial in

predicting the cross-sectional differences of stock returns.

While specifications with tradable factors seem to be occasionally contaminated by the problem

of useless factors, the situation seems to be much worse when a nontradable source of risk enters into

the model. For example, I find that specifications including such factors as durable consumption

growth or human capital proxies are not strongly identified10 and Pen-FM shrinks their risk premia

towards zero. Since conventional measures of fit, such as the crossectional R2, are often inflated

in the presence of spurious factors (Kleibergen and Zhan (2013), Gospodinov, Kan, and Robotti

(2014b)), their high in-sample values only mask a poorly identified model.

It is worth noting, however, that when a particular risk driver is identified as weak (or useless),

it does not necessarily render the model containing it invalid. The finding merely highlights the

impossibility of assessing the size of the risk premia paremeters, significance of their pricing impact

and the resulting quality of fit, based on the standard estimation techniques. The method that

I propose allows to recover identification and quality of fit only for strong risk factors (which is

contaminated otherwise), but stays silent regarding the impact of the weak ones. Furthermore,

since I focus on the multiple-beta representation, the risk premia reflect the partial pricing impact

of a factor. Therefore, it is also plausible to have a model with a factor being priced within a linear

SDF setting, but not contributing anything on its own, that is conditional on other factors in the

model. When estimated by the Fama-MacBeth procedure, its risk premium is no longer identified.

Although the focus of my paper is on the models that admit multivariate beta-representation, noth-

ing precludes extending shrinkage-based estimators to a linear SDF setting to assess the aggregate

factor impact as well.

Why does identification have such a profound impact on parameter estimates? The reason is

simple: virtually any estimation technique relies on the existence of a unique set of true param-

eter values that satisfies the model’s moment conditions or minimises a loss function. Therefore,

violations of this requirement in general deliver estimates that are inconsistent, have non-standard

distribution, and require (when available) specifically tuned inference techniques for hypothesis test-

ing. Since the true, population values of the β’s on an irrelevant factor are zero for all the assets, the

10This finding is consistent with the results of identification tests in Zhiang and Zhan (2013) and Burnside (2015)
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risk premia in the second stage are no longer identified, and the entire inference is distorted. Kan

and Zhang (1999b) show that even a small degree of model misspecification would be enough to

inflate the useless factor t-statistic, creating an illusion of its pricing importance. Kleibergen (2009)

further demonstrates that the presence of such factors has a drastic impact on the consistency and

asymptotic distribution of the estimates even if the model is correctly specified and the true β’s are

zero only asymptotically (β = B√
T

).

When the model is not identified, obtaining consistent parameter estimates is generally hard, if

not impossible. There is, however, an extensive literature on inference, originating from the problem

of weak instruments (see, e.g. Stock, Watson, and Yogo (2002)). Kleibergen (2009) develops

identification-robust tests for the two-step procedure of Fama and MacBeth, and demonstrates how

to build confidence bounds for the risk premia and test hypotheses of interest in the presence of

spurious or weak factors. Unfortunately, the more severe is the identification problem, the less

information can be extracted from the data. Therefore, it comes as no surprise that in many

empirical applications robust confidence bounds can be unbounded at least from one side, and

sometimes even coincide with the whole real line (as in the case of conditional Consumption-CAPM

of Lettau and Ludvigson (2001b)), making it impossible to draw any conclusions either in favour

of or against a particular hypothesis. In contrast, my approach consists in recovering a subset of

parameters that are strongly identified from the data, resulting in their consistent, asymptotically

normal estimates and usual confidence bounds. I prove that when the model is estimated by Pen-

FM, standard bootstrap techniques can be used to construct valid confidence bounds for the strong

factors risk premia even in the presence of useless factors. This is due to the fact that my penalty

depends the nature of the second stage regressor (strong or useless), which remaines the same

in bootstrap and allows the shrinkage term to eliminate the impact of the useless factors. As a

result, bootstrap remains consistent and does not require additional modifications (e.g. Andrews

and Guggenberger (2009), Chatterjee and Lahiri (2011)).

Using various types of penalty to modify the properties of the original estimation procedure has

a long and celebrated history in econometrics, with my estimator belonging to the class of Least

Absolute Selection and Shrinkage Operator (i.e. lasso, Tibshirani (1996))11. The structure of the

11Various versions of shrinkage techniques have been applied to a very wide class of models, related to variable
selection, e.g. adaptive lasso (Zou (2006)) for variable selection in a linear model, bridge estimator for GMM (Caner
(2009)), adaptive shrinkage for parameter and moment selection (Liao (2013)), or instrument selection (Caner and
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penalty, however, is new, for it is designed not to choose significant parameters in the otherwise

fully identified model, but rather select a subset of parameters that can be strongly identified and

recovered from the data. The difference is subtle, but empirically rather striking. Simulations

confirm that whereas Pen-FM successfully captures the distinction between strong and weak factors

even for a very small sample size, the estimates produced, for instance, by the adaptive lasso (Zou

(2006)), display an erratic behaviour12.

The paper also conributes to a recent strand of literature that examines the properties of conven-

tional asset pricing estimation techniques. Lewellen, Nagel, and Shanken (2010) demonstrate that

when a set of assets exhibits a strong factor structure, any variable correlated with those unobserved

risk drivers may be indentified as a significant determinant of the cross-section of returns. They

assume that model parameters are identified, and propose a number of remedies to the problem,

such as increasing the asset span by including portfolios, constructed on other sorting mechanisms,

or reporting alternative measures of fit and confidence bounds for them. These remedies, however,

do not necessarily lead to better identification.

Burnside (2015) highlights the importance of using different SDF normalisations, their effect on

the resulting identification conditions and their relation to the useless factor problem. He further

suggests using the Kleibergen and Paap (2006) test for rank deficiency as a model selection tool.

Gospodinov et al. (2014a) also consider the SDF-based estimation of a potentially misspecified

asset pricing model, contaminated by the presence of irrelevant factors. They propose a sequential

elimination procedure that successfully identifies spurious factors and those that are not priced in

the cross-section of returns, and eliminates them from the candidate model. In contrast, the focus of

my paper is on the models with β-representation, which reflect the partial pricing impact of different

risk factors13. Further, I use the simulation design from Gospodinov et al. (2014a) to compare and

contrast the finite sample performance of two approaches when the useless factors are assumed to

have zero true covariance with asset returns. While both methods can successfully identify and

Fan (2014))
12This finding is expected, since the adaptive lasso, like all other similar estimators, requires identification of the

original model parameters used either as part of the usual loss function, or the penalty imposed on it. Should this
condition fail, the properties of the estimator will be substantially affected. This does not, however, undermine any
results for the correctly identified model

13In addition, the two-step procedure could also be used in the applications that rely on the separate datasets used
in the estimation of betas and risk premia. For example, Bandi and Tamoni (2014) and Boons and Tamoni (2014)
estimate betas from long-horizon regressions and use them to price the cross-section of returns observed at a higher
frequency, which would be impossible to do using a standard linear SDF-based approach
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exclude useless factors, my estimator seems to be less conservative, and does not result in the

accidental elimination of strong factors from the model with a relatively small sample size, when

it is hard to reliably assess the pricing impact of the factor. The difference could be particularly

important for empirical applications that use quarterly or yearly data, where the available sample

is naturally quite small.

The rest of the paper is organised as follows. I first discuss the structure of a linear factor

model and summarise the consequences of identification failure established in the prior literature.

Section III introduces Pen-FM and Pen-GMM estimators. I then discuss their asymptotic properties

(Section IV) and simulation results (Section V). Section VI presents empirical applications, and

Section VII concludes.

I. Linear factor model

I consider a standard linear factor framework for the cross-section of asset returns, where the

risk premia for n portfolios are explained through their exposure to k factors, that is

E(Ret ) = inλ0,c + βfλ0,f ,

cov(Ret , Ft) = βfvar(Ft), (1)

E(Ft) = µf ,

where t = 1...T is the time index of the observations, Ret is the n × 1 vector of excess portfolios

returns, Ft is the k × 1 vector of factors, λ0,c is the intercept (zero-beta excess return), λ0,f is the

k× 1 vector of the risk premia on the factors, βf is the n× k matrix of portfolio betas with respect

to the factors, and µf is the k × 1 vector of the factors means. Although many theoretical models

imply that the common intercept should be equal to 0, it is often included in empirical applications

to proxy the imperfect measurement of the risk-free rate, and hence is a common level factor in

excess returns.

Model (1) can also be written equivalently as follows

Ret = inλ0,c + βfλ0,f + βfvt + ut, (2)

Ft = µf + vt,
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where ut and vt are n× 1 and k × 1 vectors of disturbances.

After demeaning the variables and eliminating µf , the model becomes:

Ret = inλ0,c + βf (F t + λ0,f ) + εt = βλ0 + βfF t + εt, (3)

Ft = µf + vt,

where εt = ut + βfv, v̄ = 1
T

∑T
t=1 vt, F t = Ft − F , F = 1

T

∑T
t=1 Ft, β = (in βF ) is a n × (k + 1)

matrix, stacking both the n × 1 unit vector and asset betas, and λ0 = (λ0,c, λ
′
0,f )′ is a (k + 1) × 1

vector of the common intercept and risk premia parameters.

Assuming εt and vt are asymptotically uncorrelated, our main focus is on estimating the pa-

rameters from the first equation in (3). A typical approach would be to use the Fama-MacBeth

procedure, which decomposes the parameter estimation in two steps, focusing separately on time

series and cross-sectional dimensions.

The first stage consists in time series regressions of excess returns on factors, to get the estimates

of βf :

β̂f =

T∑
t=1

R̄et F̄
′
t

 T∑
j=1

F̄jF̄
′
j

−1

,

where β̂f is an n× k matrix, R
e
t is a n× 1 vector of demeaned asset returns, R

e
t = Ret − 1

T

∑T
t=1R

e
t .

While the time series beta reveals how a particular factor correlates with the asset excess returns

over time, it does not indicate whether this correlation is priced and could be used to explain the

differences between required rates of return on various securities. The second stage of the Fama-

MacBeth procedure aims to check whether asset holders demand a premium for being exposed to

this source of risk (βj , j = 1..k), and consists in using a single OLS or GLS cross-sectional regression

of the average excess returns on their risk exposures.

λ̂OLS =
[
β̂′β̂
]−1

β̂′R̄e, (4)

λ̂GLS =
[
β̂′Ω̂−1β̂

]−1
β̂′Ω̂−1R̄e,

where β̂ = [in β̂f ] is the extended n × (k + 1) matrix of β̂’s, λ̂ = [λ̂c λ̂′f ]′ is a (k + 1) × 1

vector of the risk premia estimates, R̄e = 1
T

∑T
t=1R

e
t is a n× 1 vector of the average cross-sectional

excess returns, and Ω̂ is a consistent estimate of the disturbance variance-covariance matrix, e.g.
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Ω̂ = 1
T−k−1

∑T
t=1(R̄et − β̂f F̄t)(R̄et − β̂f F̄t)′.

If the model is identified, that is, if the matrix of β has full rank, the Fama-MacBeth procedure

delivers risk premia estimates that are consistent and asymptotically normal, allowing one to con-

struct confidence bounds and test hypotheses of interest in the usual way (e.g. using t-statistics).

In the presence of a useless or weak factor (βj = 0n or more generally βj = B√
T

, where B is an n×1

vector), however, this condition is violated, thus leading to substantial distortions in parameter

inference.

Although the problem of risk premia identification in the cross-section of assets is particularly

clear when considering the case of the two-stage procedure, the same issue arises when trying to

jointly estimate time series and cross-sectional parameters by GMM, using the following set of

moment conditions:

E [Ret − inλ0,c − βf (λ0,f − µf + Ft)] = 0n,

E
[
(Ret − inλ0,c − βf (λ0,f − µf + Ft))F

′
t

]
= 0n×k, (5)

E[Ft − µf ] = 0k.

Assuming the true values of model parameters θ0 = {vec(βf );λ0,c;λ0,f ;µf} belong to the interior

of a compact set S ∈ Rnk+k+k+1, one could then proceed to estimate them jointly by minimizing

the following objective function:

θ̂ = arg min
θ∈S

[
1

T

T∑
t=1

gt(θ)

]′
WT (θ)

[
1

T

T∑
t=1

gt(θ)

]
, (6)

where WT (θ) is a positive definite weight (n+ nk + k)× (n+ nk + k) matrix, and

gt(θ) =


Ret − inλc − βf (λf − µ+ Ft)

vec ([Ret − inλc − βf (λf − µ+ Ft)]F
′
t)

Ft − µ

 (7)

is a sample moment of dimension (n+ nk + k)× 1.

In the presence of a useless factor the model is no longer identified, since the matrix of first

derivatives G(θ0) = E[Gt(θ0)] = E
[
dgt(θ0)
dθ

]
has a reduced column rank if at least one of the

vectors in βf is 0n×1 or B√
T

, making the estimates from eq.(6) generally inconsistent and having a
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nonstandard asymptotic distribution, since

dgt(θ0)

dθ′
=


[λ0,f − µf + Ft]

′ ⊗ In −in βf βf

(Ft ⊗ In) [(λ0,f − µf + Ft)
′ ⊗ In] −vec(inF ′t) −(Ft ⊗ In)βf (Ft ⊗ In)βf

0k×nk 0k×1 0k×k −Ik

 , (8)

where ⊗ denotes the Kronecker product and In is the identity matrix of size n. Note that the

presence of useless factors affects only the risk premia parameters, since as long as the mean and

the variance-covariance matrix of the factors are well-defined, the first moment conditions in eq. (5)

would be satisfied for any λf as long as βf (λf − λ0,f ) = 0. Therefore, identification problem relates

only to the risk premia, but not the factor exposures, betas.

Throughout the paper, I consider the linear asset pricing framework, potentially contaminated

by the presence of useless/weak factors, whether correctly specified or not. I call the model correctly

specified if it includes all the true risk factors and eq.(3) holds. The model under estimation, however,

could also include a useless/weak risk driver that is not priced in the cross-section of asset returns.

The model is called misspecified if eq.(3) does not hold. This could be caused by either omitting

some of the risk factors necessary for explaining the cross-section of asset returns, or if the model

is actually a non-linear one. The easiest way to model a misspecification would be to assume the

true data-generating process including individual fixed effects for the securities in the cross-sectional

equation:

E(Ret ) = λ0,i + βfλ0,f

where λ0,i is a n × 1 vector of individual intercepts. In the simulations I consider the case of

a misspecified model, where the source of misspecification comes from the omitted risk factors.

Therefore, it contaminates the estimation of both betas and risk premia.

II. Identification and what if it’s not there

Depending on the nature of the particular identification failure and the rest of the model features,

conventional risk premia estimators generally lose most of their properties: consistency, asymptotic

normality, not to mention the validity of standard errors and confidence interval coverage for all

the factors in the model. Further, numerical optimisation techniques may have convergence issues,
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faced with a relatively flat region of the objective function, leading to unstable point estimates.

Kan and Zhang (1999a) are the first to notice the problem generated by including a factor uncor-

related with asset returns in the GMM estimation framework of a linear stochastic discount factor

model. They show that if the initial model is misspecified, the Wald test for the risk premia overre-

jects the null hypothesis of a factor having zero risk premium, and hence a researcher will probably

conclude that it indeed explains the systematic differences in portfolio returns. The likelihood of

finding significance in the impact of a useless factor increases with the number of test assets; hence,

expanding the set of assets (e.g. combining 25 Fama-French with 19 industry portfolios) may even

exacerbate the issue (Gospodinov et al. (2014a)). Further, if the model is not identified, tests for

model misspecification have relatively low power, thus making it even more difficult to detect the

problem.

Gospodinov et al. (2014a) consider a linear SDF model that includes both strong and useless

factors, and the effect of misspecificaion-robust standard errors. Their estimator is based on mini-

mizing the Hansen-Jagannathan distance (Hansen and Jagannathan (1997)) between the set of SDF

pricing the cross-section of asset returns, and the ones implied by a given linear factor structure.

This setting allows to construct misspecification-robust standard errors, because the value of the ob-

jective function can be used to assess the degree of model misspecification. They demonstrate that

the risk premia estimates of the useless factors converge to a bounded random variable, and are in-

consistent. Under correct model specificatation, strong factors risk premia estimates are consistent;

however, they are no longer asymptotically normal. Further, if the model is misspecified, risk premia

estimates for the strong factors are inconsistent and their pricing impact could be crowded out by

the influence of the useless ones. Useless factors t-statistics, in turn, are inflated and asymptotically

tend to infinity.

Kan and Zhang (1999b) study the properties of the Fama-MacBeth two-pass procedure with a

single useless risk factor (β = 0n), and demonstrate the same outcome. Thus, faced with a finite

sample, a researcher is likely to conclude that such a factor explains the cross-sectional differences in

asset returns. Kleibergen (2009) also considers the properties of the OLS/GLS two-pass procedure,

if the model if weakly identified (β = B√
T

). The paper proposes several statistics that are robust

to identification failure and thus could be used to construct confidence sets for the risk premia

parameters without pretesting.
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Cross-sectional measures of fit are also influenced by the presence of irrelevant factors. Kan and

Zhang (1999b) conjecture that in this case cross-sectional OLS-based R2 tends to be substantially

inflated, while its GLS counterpart appears to be less affected. This was later proved by Kleibergen

and Zhan (2013), who derive the asymptotic distribution of R2 and GLS-R2 statistics and confirm

that, although both are affected by the presence of useless factors, the OLS-based measure suffers

substantially more. Gospodinov et al. (2014b) consider cross-sectional measures of fit for the families

of invariant (i.e. MLE, CUE-GMM, GLS) and non-invariant estimators in both SDF and beta-based

frameworks and show that the invariant estimators and their fit are particularly affected by the

presence of useless factors and model misspecification.

III. Pen-FM estimator

Assuming the true values of risk premia parameters λ0 = (λ0,c, λ0,F ) lie in the interior of the

compact parameter space Θ ∈ Rk, consider the following penalised version of the second stage in

the Fama-MacBeth procedure:

λ̂pen = arg min
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

k∑
j=1

1

||β̂j ||d1
|λj |, (9)

where d > 0 and ηT > 0 are tuning parameters, and ||·||1 stands for the L1 norm of the vector,

||β̂j ||1 =
∑n

i=1 |β̂i,j |.

The objective function in eq. 9 is composed of two parts: the first term is the usual loss function,

that typically delivers the OLS or GLS estimates of the risk premia parameters in the cross-sectional

regression, depending on the type of the weight matrix, WT . The second term introduces the penalty

that is inversely proportional to the strength of the factors, and is used to eliminate the irrelevant

ones from the model.

Eq. 9 defines an estimator in the spirit of the lasso, Least Absolute Selection and Shrinkage

Estimator of Tibshirani (1996) or the adaptive lasso of Zou (2006)14. The modification here, how-

ever, ensures that the driving force for the shrinkage term is not the value of the risk premium or

its prior regression-based estimates (which are contaminated by the identification failure), but the

14Similar shrinkage-based estimators were later employed in various contexts of parameter estimation and variable
selection. For a recent survey of the shrinkage-related techniques, see, e.g. Liao (2013).
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nature of the betas. In particular, in the case of the adaptive lasso, the second stage estimates for

the risk premia would have the penalty weights inversely proportional to their prior estimates:

λ̂A.Lasso = arg min
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

k∑
j=1

1

|λ̂j,ols|d
|λj |, (10)

where λ̂j is the OLS-based estimate of the factor j risk premium. Since these weights are derived

from inconsistent estimates, with those for useless factors likely to be inflated under model misspec-

ification, the adaptive lasso will no longer be able to correctly identify strong risk factors in the

model. Simulations in Section V further confirm this distinction.

The reason for using the L1 norm of the vector β̂j , however, is clear from the asymptotic

behaviour of the latter:

vec(β̂j) = vec(βj) +
1√
T
N
(
0,Σβj

)
+ op

(
1√
T

)
,

where vec(·) is the vectorisation operator, stacking the columns of a matrix into a single vector,

N
(
0,Σβj

)
is the asymptotic distribution of the estimates of betas, a normal vector with mean 0 and

variance-covariance matrix Σβj , and op

(
1√
T

)
contains the higher-order terms from the asymptotic

expansion that do not influence the estimates
√
T asymptotics. If a factor is strong, there is at least

one portfolio that has true non-zero exposure to it; hence the L1 norm of β̂ converges to a positive

number, different from 0 (
∥∥∥β̂j∥∥∥

1
= Op(1)). However, if a factor is useless and does not correlate

with any of the portfolios in the cross-section, βj = 0n×1, therefore the L1 norm of β̂ converges

to
∥∥∥β̂j∥∥∥

1
= Op(

1√
T

). This allows to clearly distinguish the estimation of their corresponding risk

premia, imposing a higher penalty on the risk premium for a factor that has small absolute betas.

Note that in the case of local-to-zero asymptotics in weak identification (βsp = 1√
T
Bsp), again∥∥∥β̂j∥∥∥

1
= Op(

1√
T

), the same penalty would be able to pick up its scale and shrink the risk premium

at the second pass, eliminating its effect.

What is the driving mechanism for such an estimator? It is instructive to show its main features

with an example of a single risk factor and no intercept at the second stage.
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λ̂pen = arg min
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

1

||β̂||d1
|λ|

= arg min
λ∈Θ

[
λ− λ̂WLS

]′
β̂′WT β̂(λ− λ̂WLS) + ηT

1

||β̂||d1
|λ|,

where λWLS =
[
β̂′WT β̂

]−1
β̂′WT R̄e is the weighted least squares estimate of the risk premium

(which corrresponds to either the OLS or GLS cross-sectional regressions).

The solution to this problem can easily be seen as a soft-thresholding function:

λ̂pen = sign
(
λ̂WLS

)(
|λ̂WLS | − ηT

1

2β̂′WT β̂||β̂||d1

)
+

(11)

=


λ̂WLS − ηT 1

2β̂′WT β̂||β̂||d1
if λ̂WLS ≥ 0 and ηT

1
2β̂′WT β̂||β̂||d1

< |λ̂WLS |

λ̂WLS + ηT
1

2β̂′WT β̂||β̂||d1
if λ̂WLS < 0 and ηT

1
2β̂′WT β̂||β̂||d1

< |λ̂WLS |

0 if ηT
1

2β̂′WT β̂||β̂||d1
≥ |λ̂WLS |

Eq. 11 illustrates the whole idea behind the modified lasso technique: if the penalty associated

with the factor betas is high enough, the weight of the shrinkage term will asymptotically tend to

infinity, setting the estimate directly to 0. At the same time, I set the tuning parameters (d and

ηT ) to such value that the threshold component does not affect either consistency or the asymptotic

distribution for the strong factors (for more details, see Section IV).

If there is more than one regressor at the second stage, there is no analytical solution to the

minimization problem of Pen-FM; however, it can be easily derived numerically through a sequence

of 1-dimensional optimizations on the partial residuals, which are easy to solve. This is the so-called

pathwise coordinate descent algorithm, where, at each point in time only one parameter estimate

is updated. The algorithm goes as follows:

Step 1. Pick a factor i ∈ [1..k] and write the overall objective function as

L =

[
R̄e − β̂iλi − β̂j λ̃j

j 6=i

]′
WT

[
R̄e − β̂iλi − β̂j λ̃j

j 6=i

]
+ ηT

 k∑
j=1,j 6=i

1∥∥∥β̂j∥∥∥d
1

∣∣∣λ̃j∣∣∣+
1∥∥∥β̂i∥∥∥d

1

|λi|


where all the values of λj , except for the one related to factor i, are fixed at certain levels λ̃j,j 6=i.

Step 2. Optimise L w.r.t λi. Note that this is a univariate lasso-style problem, where the

residual pricing errors are explained only by the chosen factor i.
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Step 3. Repeat the coordinate update for all the other components of λ.

Step 4. Repeat the procedure in Steps 1-3 until convergence is reached.

The convergence of the algorithm above to the actual solution of Pen-FM estimator problem

follows from the general results of Tseng (1988, 2001), who studies the coordinate descent in a

general framework. The only requirement for the algorithm to work is that the penalty function is

convex and additively separable in the parameters, which is clearly satisfied in the case of Pen-FM.

Pathwise-coordinate descent has the same level of computational complexity as OLS (or GLS), and

therefore works very fast. It has been applied before to various types of shrinkage estimators, as

in Friedman, Hastie, Hoffling, and Tibshirani (2007), and has been shown to be very efficient and

numerically stable. It is also robust to potentially high correlations between the vectors of beta,

since each iteration relies only on the residuals from the pricing errors.

As in the two-stage procedure, I define the shrinkage-based estimator for GMM (Pen-GMM) as

follows:

θ̂pen = arg min
θ∈S

[
1

T

T∑
t=1

gt(θ)

]′
WT (θ)

[
1

T

T∑
t=1

gt(θ)

]
+ ηT

k∑
j=1

1

||β̂||d1
|λj |, (12)

where S is a compact set in Rnk+k+k+1.

The rationale for constructing such a penalty is the same as before, since one can use the

properties of the β̂s to automatically distinguish the strong factors from the weak ones on the basis

of some prior estimates of the latter (OLS or GMM based).

It is important to note that the penalty proposed in this paper does not necessarily need to

be based on ||β̂j ||1. In fact, the proofs can easily be modified to rely on any other variable that

has the same asymptotic properties, i.e. being Op

(
1√
T

)
for the useless factors and Op(1) for the

strong ones. Different scaled versions of the estimates of β, such as partial correlations or their

Fischer transformation all share this property. Partial correlations, unlike betas, are invariant to

linear transformation of the data, while Fisher transformation (f(ρ̂) = 1
2 ln
(

1+ρ̂
1−ρ̂

)
) provides a map

of partial correlations from [−1, 1] to R.
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IV. Asymptotic results

Similar to most of the related literature, the present paper relies on the following high-level

assumptions regarding the behaviour of the disturbance term εt:

ASSUMPTION 1: (Kleibergen (2009)). As T →∞,

(a)

1√
T

T∑
t=1



 1

Ft

⊗ (Rt − inλ0,c − βf (f t + λ0,f )
)
 d→

ϕR
ϕβ


where ϕR is n × 1, ϕβ is nk × 1, where n is the number of portfolios and k is the number of

factors. Further,
(
ϕ′R, ϕ

′
β

)′
∼ N (0, V ), where V = Q⊗ Ω, and

Q
(k+1)×(k+1)

=

 1 µ′f

µf Vff + µfµ
′
f

 = E


 1

Ft


 1

Ft


′ , Ω

n×n
= var(εt), Vff

k×k
= var(Ft)

(b)

plim
T→∞

1

T

T∑
j=1

F̄jF̄
′
j = Qff , plim

T→∞
F̄ = µf ,

where Qff has full rank.

Assumption 1 provides the conditions required for the regression-based estimates of βf to be

easily computed using conventional methods, i.e. the data should conform to certain CLT and

LLN, resulting in the standard
√
T convergence. This assumption is not at all restrictive, and can

be derived from various sets of low-level conditions, depending on the data generating process in

mind for the behaviour of the disturbance term and its interaction with the factors, e.g. as in

Shanken (1992) or Jagannathan and Wang (1998)15.

LEMMA 1: Under Assumption 1, average cross-sectional returns and OLS estimator β̂ have a joint

large sample distribution:

15For example, Shanken (1992) uses the following assumptions, which easily result in Assumption 1:
1. The vector εt is independently and identically distributed over time, conditional on (the time series values for)

F , with E[εt|F ] = 0 and V ar(εt|F ) = Ω (rank N)
2. Ft is generated by a stationary process such that the first and second sample moments converge in probability,

as T →∞ to the true moments which are finite. Also, F̄ is asymptotically normally distributed.

Jagannathan and Wang (1998) provide low level conditions for a process with conditional heteroscedasticity.
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√
T

 R̄− βλf

vec(β̂ − β)

 d→

ψR
ψβ

 ∼ N

0

0

 ,

Ω 0

0 V −1
ff ⊗ Ω

 ,


where ψR = ϕR is independent of ψβ = (V −1

ff ⊗ In)(ϕβ − (µf ⊗ In)ϕR)

Proof. See Kleibergen (2009), Lemma 1.

A. Correctly specified model

Having intuitively discussed the driving force behind the proposed shrinkage-based approach, I

now turn to its asymptotic properties. The following propositions describe the estimator’s behaviour

in the presence of irrelevant factors: β = (βns, βsp), where βns is an n×k1 matrix of the set of betas

associated with k1 non-spurious factors (including a unit vector) and βsp denotes the matrix of the

true value of betas for useless (βsp = 0n×(k+1−k1)) or weak (βsp =
Bsp√
T

) factors.

PROPOSITION 1: Under Assumption 1, if WT
p→ W , W is a positive definite n × n matrix,

ηT = ηT−d/2 with a finite constant η > 0, d > 0 and β′nsβns having full rank, λ̂ns
p→ λ0,ns and

λ̂sp
p→ 0

Further, if d > 2

√
T

λ̂ns − λ0,ns

λ̂sp

 d→

[β′nsWβns]
−1 β′nsWΨβ,nsλ0,ns + (β′nsWβns)

−1 β′nsWψR

0


Proof. See Appendix B.1.

The intuition behind the proof for consistency is clear: the tuning parameter ηT is set in such

a way that the overall effect of the penalty, ηT , disappears with the sample size, and therefore does

not affect the consistency of the parameter estimation, unless some of its shrinkage components are

inflated by the presence of irrelevant factors. If a factor is useless, the L1 norm of β̂j tends to 0 at

the
√
T rate, and the penalty converges to a positive constant in front of the corresponding |λj |.

Further, since β̂j → 0n×1, λj disappears from the usual loss function,
[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
,

and it is the penalty component that determines its asymptotic behaviour, shrinking the estimate

towards 0. At the same time, other parameter estimates are not affected, and their behaviour is

fully described by standard arguments.
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The shrinkage-based second pass estimator has the so-called oracle property for the non-spurious

factors: the estimates of their risk premia have the same asymptotic distribution as if we had not

included the useless factors in advance. Risk premia estimates are asymptotically normal, with two

driving sources of the error component: estimation error from the first pass β’s (and the resulting

error-in-variables problem), and the disturbance term effect from the second pass.

The risk premia for the useless factors are driven towards 0 even at the level of the asymptotic

distribution to ensure that they do not affect the estimation of other parameters. It should be

emphasized, that the effect of the penalty does not depend on the actual value of the risk premium.

Unlike the usual lasso or related procedures, the mechanism of the shrinkage here is driven by the

strength of β̂, regressors in the second pass. Therefore, there is no parameter discontinuity in the

vicinity of 0, and bootstrap methods can be applied to approximate the distribution and build the

confidence bounds.

The assumption of β = 0 may be often regarded as somewhat restrictive, as many variables

often have a substantial finite sample correlation that is different from 0, but could still lead to

weakly identified risk premium at most. In this case, a more realistic approximation of local-to-zero

asymptotics should be used. Following the literature on weak instruments, I consider the case of

βsp =
Bsp√
T

. This modelling device is particularly useful when assessing whether a given finite sample

estimate of beta is large enough to correctly identify an associated risk premium. For example, in a

very small sample of data, a 5% correlation stands for a very noisy, virtually no-existent relationship

between a candidate risk factor and portfolio returns. Computed from a large set of data, however,

the same number could reflect a small, but persistent relationship between the variables. Hence,

Bsp√
T

is designed to capture the type of finite sample relationship between the factor and returns that

is non-zero, but relatively small for a given sample size to reliably distinguish it and successfully

identify an associated risk premia (should there be any)16.

As in the case of strictly useless factors, I present the asymptotic properties of the Pen-FM

estimator, when there are weak factors in the model.

PROPOSITION 2: Under Assumption 1, if βsp =
Bsp√
T

, WT
p→ W , W is a positive definite n × n

matrix, ηT = ηT−d/2 with a finite constant η > 0, d > 0 and β′nsβns having full rank, λ̂ns
p→ λ0,ns

16Note, that the sqrtt is the rate of convergence that comes up in the standard asymptotic theory of asset pricing
models and reflects the rate at which point estimates become more informative, given the sample size
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and λ̂sp
p→ 0

Further, if d > 2

√
T

λ̂ns − λ0,ns

λ̂sp

 d→

(β′nsW−1βns
]−1

β′nsW
−1Bspλ0,sp +

[
β′nsW

−1βns
)−1

β′nsW
−1(ψR + Ψβ,nsλ0,ns)

0


Proof. See Appendix B.2.

The logic behind the proof is exactly the same as in the previous case. Recall that even in

the case of weak identification again
∥∥∥β̂j∥∥∥

1
= Op(

1√
T

). Therefore, the penalty function recognises

its impact, shrinking the corresponding risk premia towards 0, while leaving the other parameters

intact.

The situation with weak factors is slightly different from that with purely irrelevant ones. While

excluding such factors does not influence consistency of the strong factors risk premia estimates, it

affects their asymptotic distribution, as their influence does not disappear fast enough (it is of the

rate 1√
T

, the same as the asymptotic convergence rate), and hence we get an asymptotic bias apart

from the usual components of the distribution. Note, that any procedure eliminating the impact of

weak factors from the model (e.g. Gospodinov et al. (2014a), Burnside (2015)), results in the same

effect. In small sample it could influence the risk premia estimates; however, the size of this effect

depends on several factors, and in general is likely to be quite small, especially compared to the

usual error component.

Note that the 1√
T

bias arises only if the omitted risk premium is non-zero. This requires a factor

that asymptotically is not related to the cross-section of returns, but is nevertheless priced. Though

unlikely, one cannot rule out such a case ex ante. If the factor is tradable, the risk premium on it

should be equal to the corresponding excess return; hence one can use this property to recover a

reliable estimate of the risk premium, and argue about the possible size of the bias or try to correct

for it.
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B. Misspecified model

Model misspecification severely exacerbates many consequences of the identification failure17;

however, its particular influence depends on the degree and nature of such misspecification.

The easiest case to consider is mean-misspecification, when factor betas are properly estimated,

but the residual average returns on the second stage are non-zero. One might draw an analogy here

with panel data, where the presence of individual fixed effects would imply that the pooled OLS

regression is no longer applicable. The case of mean-misspecification is also easy to analyse, because

it allows us to isolate the issue of the correct estimation of β from the one of recovering the factor

risk premia. For example, one can model the return generation process as follows:

R̄ = c+ βλ0 +
1√
T
ψR + op

(
1√
T

)
,

vec(β̂) = vec(β) +
1√
T
ψβ + op

(
1√
T

)
,

where c is a n × 1 vector of the constants. It is well known that both OLS and GLS, applied to

the second pass, result in diverging estimates for the spurious factors risk premia and t-statistics

asymptotically tending to infinity. Simulations confirm the poor coverage of the standard confidence

intervals and the fact that the spurious factor is often found to be significant even in relatively small

samples. However, the shrinkage-based second pass I propose successfully recognises the spurious

nature of the factor. Since the first-pass estimates of β’s are consistent and asymptotically normal,

the penalty term behaves in the same way as in the correctly specified model, shrinking the risk

premia for spurious factors to 0 and estimating the remaining parameters as if the spurious factor

had been omitted from the model. Of course, since the initial model is misspecified to begin with,

risk premia estimates would suffer from inconsistency, but it would not stem from the lack of model

identification.

A more general case of model misspecification would involve an omitted variable bias (or the

nonlinear nature of the factor effects). This would in general lead to the inconsistent estimates of

betas (e.g. if the included factors are correlated with the omitted ones), invalidating the inference

in both stages of the estimation. However, as long as the problem of rank deficiency caused by the

17See, e.g. Kan and Zhang (1999a), Jagannathan and Wang (1998), Kleibergen (2009) and Gospodinov et al.
(2014a)
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useless factors remains, the asymptotic distribution of Pen-FM estimator will continue to share that

of the standard Fama-MacBeth regressions without the impact of spurious factors. A similar result

can easily be demonstrated for Pen-GMM.

C. Bootstrap

While the asymptotic distribution gives a valid description of the pointwise convergence, a

different procedure is required to construct valid confidence bounds. Although traditional shrinkage-

based estimators are often used in conjunction with bootstrap techniques, it has been demonstrated

that even in the simplest case of a linear regression with independent factors and i.i.d. disturbances,

such inferences will be invalid (Chatterjee and Lahiri (2010)). Intuitively this happens because the

classical lasso-related estimators incorporate the penalty function, which behaviour depends on the

true parameter values (in particular, whether they are 0 or not). This in turn requires the bootstrap

analogue to correctly identify the sign of parameters in the ε-neighborhood of zero, which is quite

difficult. Some modifications to the residual bootstrap scheme have been proposed to deal with this

feature of the lasso estimator (Chatterjee and Lahiri (2011, 2013)).

Fortunately, the problem explained above is not relevant for the estimator that I propose, because

the driving force of the penalty function comes only from the nature of the regressors, and hence

there is no discontinuity, depending on the true value of the risk premium. Further, in the baseline

scenario I work with a 2-step procedure, where shrinkage is used only in the second stage, leaving

the time series estimates of betas and average returns unchanged. All of the asymptotic properties

discussed in the previous section result from the first order asymptotic expansions of the time series

regressions. Therefore, it can be demonstrated that once a consistent bootstrap procedure for time

series regressions is established (be it pairwise bootstrap, blocked or any other technique appropriate

to the data generating process in mind), one can easily modify the second stage so that the bootstrap

risk premia have proper asymptotic distributions.

Consider any bootstrap procedure (pairwise, residual or block bootstrap) that remains consistent

for the first stage estimates, that is
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β̂∗ = β̂ +
1√
T

Ψβ + op

(
1√
T

)
R̄e∗ = R̄e +

1√
T

ΨR + op

(
1√
T

)
,

where β̂∗ and R̄∗ are the the bootstrap analogues of β̂ and R̄.

Then

λ̂∗pen = arg min
λ∈Θ

[
R̄∗ − β̂∗λ

]′
WT

[
R̄∗ − β̂∗λ

]
+ ηT

k∑
j=1

1∥∥∥β̂∗j ∥∥∥d
1

|λj | (13)

is the bootstrap analogue of λ̂pen.

Let Ĥn(· ) denote the conditional cdf of the bootstrap version B∗T =
√
T (λ̂∗pen − λ̂pen) of the

centred and scaled Pen-FM estimator of the risk premia BT =
√
T (λ̂pen − λ0).

PROPOSITION 3: Under conditions of Theorem 1,

ρ(Ĥ∗T , ĤT )→0, as T →∞,

where ĤT = P (BT ≤ x), x ∈ R and ρ denotes weak convergence in distribution on the set of all

probability measures on (R(k+1),B(R(k+1)))

Proof. See Appendix B.3

Proposition 3 implies that the bootstrap analogue of Pen-FM can be used as an approximation for

the distribution of the risk premia estimates. This result is similar to the properties of the adaptive

lasso, that naturally incorporates soft thresholding with regard to the optimisation solution, and

unlike the usual lasso of Tibshirani (1996), does not require aditional corrections (e.g. Chatterjee

and Lahiri (2010)).

Let bT (α) denote the α-quantile of ||BT ||, α ∈ (0, 1). Define

IT,α = b ∈ Rk : ||b− λ̂pen|| ≤ T−1/2bT (α)

the level-α confidence set for λ.

PROPOSITION 4: Let α ∈ (0, 1) be such that P (||B|| ≤ t(α) + ν) > α for all ν > 0. Then under

23



the conditions of Proposition 1

P (λ0 ∈ IT,α)→ α as T →∞

This holds if there is at least 1 non-spurious factor, or an intercept in the second stage.

Proof. See Appendix B.4

In other words, the above proposition states that having a sample of bootstrap analogues for

λ̂pen, one can construct valid percentile-based confidence bounds for strongly identified parameters.

D. Generalised Method of Moments

One can modify the objective function in eq. (6) to include a penalty based on the initial

OLS estimates of the βF parameters. Similar to the two-step procedure, this would shrink the risk

premia coefficients for the spurious factors to 0, while providing consistent estimates for all the other

parameters in the model.

The following set of assumptions provides quite general high level conditions for deriving the

asymptotic properties of the estimator in the GMM case.

ASSUMPTION 2: 1. For all 1 ≤ t ≤ T , T ≥ 1 and θ ∈ S

a) gt(θ) is m-dependent

b) |gt(θ1)− gt(θ2)| ≤Mt|θ1 − θ2|,

with limT→∞
∑T

t−1EM
p
t <∞, for some p > 2;

c) supθ∈S E|gt(θ)|p <∞ , for some p > 2

2. Define E 1
T

∑T
t=1 gt(θ) = g1T (θ)

a) Assume that g1T (θ)→ g1(θ) uniformly over S, and g1T (θ) is continuously differentiable in

θ;

b) g1(θ0,ns, λsp = 0k2) = 0, and g1(θns, λsp = 0k2) 6= 0 for θns 6= θ0,ns, where

θns = {µ, vec(β), λf,ns, λc}

3. Define the following (n + nk + k) × (nk + k + 1 + k) matrix: GT (θ) = dg1T (θ)
dθ′ . Assume that

GT (θ)
p→ G(θ) uniformly in a neighbourhood N of (θ0,ns, λsp = 0k2), G(θ) is continuous in
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theta. Gns(θns,0, λsp = 0k2) is an (n + nk + k) × (nk + k1 + k) submatrix of G(θ0) and has

full column rank.

4. WT (θ) is a positive definite matrix, WT (θ)
p→ W (θ) uniformly in θ ∈ S, where W (θ) is an

(n + nk + k) × (n + nk + k) symmetric nonrandom matrix, which is continuous in θ and is

positive definite for all θ ∈ S.

The set of assumptions is fairly standard for the GMM literature and stems from the reliance

on the empirical process theory, often used to establish the behaviour of the shrinkage-based GMM

estimators (e.g. Caner (2009), Liao (2013)). Most of these assumptions could be further substan-

tially simplified (or trivially established) following the structure of the linear factor model and the

moment function for the estimation. However, it is instructive to present a fairly general case.

Several comments are in order, however.

Assumption 2.1 presents a widespread sufficient condition for using empirical process arguments,

and is very easy to establish for a linear class of models (it also encompasses a relatively large class of

processes, including the weak time dependence of the time series and potential heteroscedasticity).

For instance, the primary conditions for the two-stage estimation procedure in Shanken (1992) easily

satisfy these requirements.

Assumptions 2.2 and 2.3, among other things, provide the identification condition used for the

moment function and its parameters. I require the presence of k2 irrelevant/spurious factors to be

the only source for the identification failure, which, once eliminated, should not affect any other

parameter estimation. One of the direct consequences is that the first-stage OLS estimates of the

betas (β̂) have a standard asymtotic normal distribution and basically follow the same speed of

convergence as in the Fama-McBeth procedure, allowing us to rely on them in formulating the

appropriate penalty function.

The following proposition establishes the consistency and asymptotic normality of Pen-GMM:

PROPOSITION 5: Under Assumption 2, if βsp = 0n×k2, ηT = ηT−d/2 with a finite constant η > 0,

and d > 2, then

λ̂sp
p→ 0k2 and θ̂ns

p→ θ0,ns
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Further, if d > 2

√
T (λ̂pen,sp)

d→ 0k2
√
T (θ̂pen,ns − θ0,ns)

d→ [Gns(θ0)′W (θ0)Gns(θ0)]−1Gns(θ0)W (θ0)Z(θ0)

where θns = {µ, vec(β, ), λf,ns, λc}, Z(θ0) ≡ N(0,Γ(θ0)), and

Γ(θ0) = limT→∞E
[

1√
T

∑T
t=1 gt(θ0)

] [
1√
T

∑T
t=1 gt(θ0)

]′
Proof. See Appendix B.5.

The intuition behind these results is similar to the two-pass procedure of Fama-MacBeth: the

penalty function is formulated in such a way as to capture the effect of factors with extremely

weak correlation with asset returns. Not only does the resulting estimator retain consistency, but it

also has an asymptotically normal distribution. Bootstrap consistency for constructing confidence

bounds could be proved using an argument, similar to the one outlined for the Pen-FM estimator

in Propositions 3 and 4.

V. Simulations

Since many empirical applications are characterised by a rather small time sample of avail-

able data (e.g. when using yearly observations), it is particularly important to assess the finite

sample performance of the estimator I propose. In this section I discuss the small-sample be-

haviour of the Pen-FM estimator, based on the simulations for the following sample sizes: T =

30, 50, 100, 250, 500, 1000.

For a correctly specified model I generate normally distributed returns for 25 portfolios from

a one-factor model, CAPM. In order to get factor loadings and other parameters for the data-

generating process, I estimate the CAPM on the cross-section of excess returns on 25 Fama-French

portfolios sorted on size and book-to-market, using quarterly data from 1947Q2 to 2014Q2 and

market excess return, measured by the value-weight return of all CRSP firms incorporated in the

US and listed on the NYSE, AMEX, or NASDAQ. The data is taken from Kenneth French website.

I then run separate time series regressions of these portfolios excess returns on Remkt to get the

estimates of market betas, β̂ (25× 1), and the variance-covariance matrix of residuals, Σ̂ (25× 25).
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I then run a cross-sectional regression of the average excess returns on the factor loadings to get λ̂0

and λ̂1.

The true factor is simulated from a normal distribution with the empirical mean and variance of

the market excess return. A spurious factor is simulated from a normal distribution with the mean

and variance of the real per capita nondurable consumption growth, constructed for the same time

period using data from NIPA Table 7.1 and the corresponding PCE deflator. It is independent of

all the other innovations in the model. Finally, returns are generated from the following equation:

Ret = λ̂0 + β̂′λ̂1 + β′R̄et,mkt + εt

where εt is generated from a multivariate normal distribution N
(

0, Σ̂
)

.

I then compare the performance of 3 estimators: (a) Fama-MacBeth, using the simulated market

return as the only factor (I call this the oracle estimator, since it includes only the true risk factor ex

ante), (b) Fama-MacBeth, using the simulated market return and the irrelevant factor, (c) Pen-FM

estimator, using the simulated market return and the irrelevant factor.

For a misspecified model the data is generated from a 3 factor model, based on 3 canonical

Fama-French factors (with parameters obtained and data generated as in the procedure outlined

above). However, in the simulations I consider estimating a 1 factor model (thus, the source of

misspecification is omitting the SMB and HML factors). Again, I compare the performance of 3

estimators: (a) Fama-MacBeth, using the simulated market return as the only factor, (b) Fama-

MacBeth, using the simulated market return and the irrelevant factor, (c) Pen-FM estimator, using

the simulated market return and the irrelevant factor.
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For each of the simulations, I also compute conventional measures of fit:

R2
ols = 1−

var
(
R̄e − λ̂olsβ̂

)
var(R̄e)

R2
gls,1 = 1−

var
(

Ω̂−1/2(R̄e − λ̂olsβ̂)
)

var(Ω̂−1/2R̄e)

R2
gls,2 = 1−

var
(

Ω̂−1/2(R̄e − λ̂glsβ̂)
)

var(Ω̂−1/2R̄e)

APE =
1

n

n∑
i=1

|αi|

HJ =

√√√√λ̂′ols

(
T∑
t=1

RtR′t

)
λ̂ols

q = α′(yΩ̂y′)+α

T 2 = α′

(
(1 + λ̂′fΣf λ̂f )q

T

)+

α

where R2
ols is the cross-sectional OLS-based R2, R2

gls,1 is the GLS-R2, based on the OLS-type

estimates of the risk premia, Ω̂ is the sample variance-covariance matrix of returns, R2
gls,2 is the

GLS-R2, based on the GLS-type estimates of the risk premia αi = R̄i
e − λ̂olsβ̂i is the average

time series pricing error for portfolio i, HJ is the Hansen-Jagannathan distance, + stands for the

pseudo-inverse of a matrix, y = I − β̂(β̂′β̂)−1β̂, T 2 is the cross-sectional test of Shanken (1985), Σf

is the variance-covariance matrix of the factors, and λ̂f is a k × 1 vector of the factors risk premia

(excluding the common intercept).

For the Pen approach, I use the penalty, defined through partial correlations of the factors and

returns (since they are invariant to the linear transformation of the data). I set the level tuning

parameter, η to σ̄, the average standard deviation of the residials from the first stage, and the

curvature parameter, d, to 4. In Section V.C, I investigate the impact of tuning parameters on

the estimator performance, and show that changing values of the tuning parameters has only little

effect on the estimator’s ability to eliminate or retain strong/weak factors.
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A. Correctly specified model

Table I demonstrates the performance of the three estimation techniques in terms of their point

estimates: the Fama-MacBeth two-pass procedure without the useless factor (denoted as the oracle

estimator), the Fama-MacBeth estimator, which includes both useful and useless factors in the

model and the Pen-FM estimator. All three us an identity weight matrix at the second stage.

For each of the estimators the table reports the mean point estimate of the risk premia and the

intercept, their bias and mean squared error. I also report in the last column the average factor

shrinkage rates for the Pen-FM estimator, produced using 10,000 simulations (i.e. how often the

corresponding risk premia estimate is set exactly to 0).

The results are striking. The useless factor is correctly identified in the model with the cor-

reponding risk premia shrunk to 0 with 100% accuracy even for such a small sample size as 30

observations. At the same time, the useful factor (market excess return) is correctly preserved in

the specification, with the shrinkage rate below 1% for all the sample sizes. Starting from T = 50,

the finite sample bias of the parameter estimates produced by the Pen-FM estimator is much closer

to that of the oracle Fama-MacBeth cross-sectional regression, which exludes the useless factor ex

ante. For example, when T = 50, the average finite sample bias of the useful factor risk premium,

produced by the oracle Fama-MacBeth estimator is 0.093 %, 0.114 % for the two-step procedure

which includes the useless factor, and 0.091% for the estimates produced by Pen-FM.

The mean squared errors of the estimates demonstrate a similar pattern: for T ≥ 50 the MSE

for Pen-FM is virtually identical to that of the Fama-MacBeth without the useless factor in the

model. At the same time, the mean squared error for the standard Fama-MacBeth estimator stays

at the same level of about 0.32% regardless of sample size, illustrating the fact that the risk premia

estimate of the useless factor is inconsistent, converging to a bounded random variable, centred at

0.

[ TABLE I ABOUT HERE ]

The size of the confidence intervals constructed by bootstrap is slighly conservative (see Table

A1). However, it is not a feature particular to the Pen-FM estimator. Even without the presence of

useless factors in the model, bootstrapping risk premia parameters seems to produce similar slighly
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conservative confidence bounds, as illustrated in Table A1, Panel A.

Fig. 1-5 also illustrate the ability of Pen-FM estimator to restore the original quality of fit

for the model. Fig. 1 shows the distribution of the cross-sectional R2 for the various sample size.

The measures of fit, produced by the model in the absence of the useless factor and with it, when

estimated by Pen-FM, are virtually identical. At the same time, R̄2, produced by the conventional

Fama-MacBeth approach seems to be inflated by the presence of a useless factor, consistent with the

theoretical findings in Kleibergen and Zhan (2013). The distribution of the in-sample measure of fit

seems to be quite wide (e.g. for T=100 it fluctuates a good deal from 0 to 80%), again highlighting

the inaccuracy of a single point estimate and a need to construct confidence bounds for the measures

of fit (e.g. as suggested in Lewellen et al. (2010). Even if we estimate the true model specification,

empirically the data contains quite a lot of noise (which was also captured in the simulation design,

calibrating data generating parameters to their sample analogues). Thus it is not surprising to find

that the probability of getting a rather low value of the R2 is still high for a moderate sample size.

Only when the number of observations is high (e.g. T=1000), does the peak of the probability

density function seem to approach 80%; however, even then the domain remains quite wide.

The GLS R2, based on either OLS or GLS second stage estimates (Fig. 2 and 3), seem to have

a much tighter spread (in particular, if one relies on the OLS second stage). As the sample size

increases, the measures of fit seem to better indicate the pricing ability of the true factor. The

GLS R2 is less affected by the problem of the useless factor (as demonstrated in Kleibergen and

Zhan (2013)), but there is still a difference between the estimates, and if the model is not identified,

R2 seems to be slighly higher, as in the OLS case. This effect, however, is much less pronounced.

Once again, the distribution of GLS R2 for Pen-FM is virtually identical to that of the conventional

Fama-MacBeth estimator without the useless factor in the model. A similar spurious increase in

the quality of fit may be noted, considering the distribution of the average pricing errors (Fig. 5),

which is shifted to the left in the presence of a useless factor. The Hansen-Jagannathan distance is

also affected by the presence of the useless factor (as demonstrated in Gospodinov et al. (2014a));

however, not as much (Fig. 4). In contrast to the standard Fama-McBeth estimator, even for a

very small sample size the average pricing error and the Hansen-Jagannathan distance produced by

Pen-FM are virtually identical to those of the model that does not include the spurious factor ex

ante.
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Figs. A1 and A2 demonstrate the impact of the useless factors on the distribution of the T 2 and q

statistics respectively. I compute their values, based on the risk premia estimates produced by Fama-

MacBeth approach with or without the useless factor, but not Pen-FM, since that would require an

assumption on the dimension of the model, and the shrinkage-based estimation is generally silent

about testing the size of the model (as opposed to identifying its parameters). The distribution of q

is extremely wide and when the model is contaminated by the useless factors is naturally inflated.

The impact on the distribution of T 2 is naturally a combination of the impact coming from the

Shanken correction term (which is affected by the identification failure through the risk premia

estimates), and q quadratics. As a result, the distribution is much closer to that of the oracle

estimator; however, it is still characterised by an appreciably heavy right tail, and is generally

slighly inflated.

B. Misspecified model

The second simulation design that I consider corresponds to the case of a misspecified model,

where the cause of misspecification is the omitted variable bias. The data is generated from a 3-

factor model, based on 3 canonical Fama-French factors (with data generating parameters obtained

from the in-sample model estimation similar to the previous case). However, in the simulations I

consider estimating a one factor model (thus, the source of misspecification is omitting the SMB

and HML factors). Again, I compare the performance of 3 estimators: (a) Fama-MacBeth, using

the simulated market return as the only factor, (b) Fama-MacBeth, using the simulated market

return and the irrelevant factor, (c) Pen-FM estimator, using the simulated market return and the

irrelevant factor.

Table II describes the pointwise distribution of the oracle estimator (Fama-MacBeth with an

identity weight matrix, applied using only the market excess return as a risk factor), Fama-MacBeth

and Pen-FM estimators, when the model includes both true and useless factors.

The results are similar to the case of the correctly specified model. Pen-FM successfully identifies

both strong and useless factors with very high accuracy (the useless one is always eliminated from

the model by shrinking its premium to 0 even when T = 30). The mean squared error and omitted

variable bias for all the parameters are close to those of the oracle estimator. At the same time,

column 9 demonstrates that the risk premium for the spurious factor, produced by conventional
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Fama-MacBeth procedure diverges as the sample size increases (its mean squared error increases

from 0.445 for T=50 to 1.979 for T=1000). However, the risk premia estimates remain within a

reasonable range of parameters, so even if the Fama-MacBeth estimates diverge, it may be difficult

to detect it in practice.

Confidence intervals based on t-statistics for the Fama-MacBeth estimator overreject the null

hypohesis of no impact of the useless factors (see Tables A4 and A6), and should a researcher rely on

them, she would be likely to identify a useless factor as priced in the cross-section of stock returns.

[ TABLE II ABOUT HERE ]

Fig. 6-10 present the quality of fit measures in the misspecified model contaminated by the

presence of a useless factor and the ability of Pen-FM to restore them. Fig. 6 shows the distribution

of the cross-sectional R2 for various sample sizes. The similarity between the measures of fit,

produced by the model in the absence of the useless factor and with it, but estimated by Pen-FM,

is striking: even for such a small sample size as 50 time series observations, the distributions of the

R2 produced by the Fama-MacBeth estimates in the absence of a useless factor, and Pen-FM in a

nonidentified model, are virtually identical. This is expected, since, as indicated in Table II, once

the useless factor is eliminated from the model, the parameter estimates produced by Pen-FM are

nearly identical to those of the one-factor version of Fama-MacBeth. As the sample size increases,

the true sample distribution of R2 becomes much tighter, and peaks around 10-15%, illustrating

the model’s failure to capture all the variation in the asset returns, while omitting two out of three

risk factors.

The cross-sectional R2 produced by the conventional Fama-MacBeth method is severely inflated

by the presence of a useless factor, and its distribution is so wide that it looks almost uniform on

[0, 1]. This illustration is consistent with the theoretical findings of Kleibergen and Zhan (2013)

and Gospodinov et al. (2014b), who demonstrate that under misspecification, the cross-sectional R2

seems to be particularly affected by the identification failure.

Fig. 7 describes the distribution of GLS R2, when the second stage estimates are produced using

the identity weight matrix. Interestingly, when the model is no longer identified, GLS R2 tends

to be lower than its true in-sample value, produced by Pen-FM or the Fama-MacBeth estimator
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without the impact of the useless factor. This implies that if a researcher were to rely on this

measure of fit, she would be likely to underestimate the pricing ability of the model. Fig. 8 presents

similar graphs for the distribution of the GLS R2, when the risk premia parameters are estimated

by GLS in the second stage. The difference between various methods of estimation is much less

pronounced, although Fama-MacBeth tends to somewhat overestimate the quality of fit produced

by the model.

The average pricing errors displayed in Fig. 10 also indicate a substantial impact of the useless

factor in the model. When such a factor is included, and risk premia parameters are estimated

using the conventional Fama-MacBeth approach, the APE seem to be smaller than they actually

are, resulting in s spurious improvement in the model’s ability to explain the difference in asset

returns. Again, this is nearly perfectly restored once the model is estimated by Pen-FM.

The Hansen-Jagannathan distance (Fig. 9) is often used to assess model misspecification, since

the greater is the distance between the set of SDFs that price a given set of portfolios and the one

suggested by a particular specification, the higher is the degree of mispricing. When a useless factor

is included, HJ in the Fama-MacBeth estimation has a much wider support than it normally does;

and, on average, it tends to be higher.

Fig. A1 and A2 demonstrate the impact of the useless factors on the distribution of T 2 and q

statistics in a misspecified model. Again, I compute their values on the basis of the risk premia

estimates produced by the Fama-MacBeth approach with or without the useless factor, but not Pen-

FM, since computing these statistics requires using the matrices with the dimension, depending on

the number of factors in the model (and not just their risk premia values). When the model contains

a spurious factor, the distribution of q becomes extremely wide and skewed to the right. The effect

of spurious factors on the distribution of T 2 is naturally a combination of the influence coming

from the Shanken correction term (which is affected by the identification failure through the risk

premia estimates), and q. T 2 is generally biased towards 0, making it harder to detect the model

misspecification in the presence of a useless factor.

C. Robustness check

In order to assess the numerical stability and finite sample properties of the Pen-FM estimator,

I study how the survival rates of useful and useless factors depend on the tuning parameters within
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the same simulation design of either the correct or the misspecified model descibed in the earlier

sections.

Table III summarises the survival rates for the useful and useless factors as a function of the

tuning parameter d, which defines the curvature of the penalty. In Proposition 1 I proved the

Pen-FM estimator to be consistent and asymptotically normal for all values of d > 2. In this

simulation I fix the other tuning parameter value, η = σ̄, and vary the value of d from 3 to 10.

Each simulation design is once again repeated 10,000 times, and the average shrinkage rates of the

factors are reported. Intuitively, the higher the curvature parameter, the harsher is the estimated

difference between a strong and a weak factor, and hence, one would also expect a slighly more

pronounced difference between their shrinkage rates.

It can be clearly seen that the behaviour of the estimates is nearly identical for different values

of the curvature parameter and within 1% difference from each other. The only case that stands

out, is when the sample is very small (30-50 observations) and d = 3. In this case the useful factor

has been mistakenly identified as the spurious one in 1-2.5% of the simulations, but these types of

fluctuations are fully expected when dealing with such a small sample with a relatively low signal-

to-noise ratio. A similar pattern characterises the shrinkage rates for the useless factors, which are

extremely close to 1.

[ TABLES III, IV ABOUT HERE ]

Table IV shows how the shrinkage rates of Pen-FM depend on the value of the other tuning

parameter, η, which is responsible for the overall weight on the penalty compared with the standard

component of the loss function (see eq. 9) and could be thought of as the level parameter. Once

again, I conduct 10,000 simulations of the correctly or incorrectly specified model for the various

sample size, and compute the shrinkage rates for both useful and useless factors. I fix the curvature

tuning parameter, d, at d = 4, and vary η.

I consider the following range of parameters:

1. η = R̄e, the average excess return on the portfolio;

2. η = ln(σ̄2), log of the average volatility of the residuals from the first stage;

3. η = σ̄, the average standard deviation of the first stage residuals;
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4. the value of η is chosen by fivefold cross-validation;

5. the value of η is chosen by leave-one-out cross-validation.

I have chosen the values of the tuning parameter η that either capture the scale of the data (for

example, whether excess returns are displayed in percentages or not), or are suggested by some of

the data-driven techniques18. Cross-validation (CV) is intuitively appealing, because it is a data-

driven method and it naturally allows one to assess the out-of sample performance of the model,

treating every observation as part of the validation set only once. CV-based methods have been

extensively used in many different applications, and have proved to be extremely useful19. Here I

briefly describe the so-called k-fold cross-validation.

The original sample is divided into k equal size subsamples, followed by the following algorithm.

• Pick a subsample and call it a validation set; all the other subsamples form a training set.

• Pick a point on the grid for the tuning parameters. For the chosen values of the tuning

parameters estimate the model on the training set and assess its performnce on the validation

set by the corresponding loss function (LT (λ̂)).

• Repeat the procedure for all the other subsamples.

• Compute the average of the loss function (CV criterion).

• Repeat the calculations for all the other values of the tuning parameters. Since the location

of the minimum CV value is a random variable, it is often suggested that the one to pick the

one that gives the largest CV criterion within 1 standard deviation of its absolute minimum

on the grid, to ensure the robustness of the result (Friedman, Hastie, and Tibshirani (2010)).

Table IV summarises the shrinkage rates of the useful and useless factors for different values of

the level tuning parameter, η. Similar to the findings in Table III, the tuning parameter impact is

virtually negligible. The useless factor is successfully identified and eliminated from the model in

nearly 100% of the simulations, even for a very small sample size, regardless of whether the model is

18Although the table presents the results for the tuning parameteres selected by cross-validation, I have also con-
sidered such alternative procedures as BIC, Generalised BIC and the pass selection stability criterion. The outcomes
are similar both quantitively and qualitatively, and are available upon request.

19For an excellent overview see, e.g. Hastie, Tibshirani, and Friedman (2011)
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correctly or incorrectly specified, while the strong factor is successfully retained with an equally high

probability. The only setting where it causes some discrepancy (within 2-3% confidence bounds) is

the case of a misspecified model and a very small sample size (T = 30 or 50); but it is again entirely

expected for the samples of such size, and therefore does not raise any concerns.

D. Comparing Pen-FM with alternatives

In this section I compare the finite sample performance of the sequential elimination procedure

proposed in Gospodinov et al. (2014a) and that of Pen-FM with regard to identifying the strong

and useless factors.

I replicate the simulation designs used in Table 4 of Gospodinov et al. (2014a)20, to reflect

various combinations of the risk drivers in a potential four-factor model: strong factors that are

either priced in the cross-section of asset returns or not, and irrelevant factors. For each of the

variables I compute the frequency with which it is identified as a strong risk factor in the cross-

section of asset returns and consequently retained in the model. Each simulation design is repeated

10,000 times.

Panel A in Table V summarises the factor survival rates for a correctly specified model. The top

panel focuses on the case of 2 priced strong factors, 1 strong factor that is correlated with returns,

but not priced, and 1 purely irrelevant factor, which does not correlate with asset returns21. For

each of the variables I present its survival rate, based on the misspecification-robust tm− statistic

of Gospodinov et al. (2014a)22 for a linear SDF model, the frequency with which the corresponding

risk premium estimate was not set exactly to 0 by the Pen-FM estimator and one minus the average

shrinkage rate from the 10, 000 bootstrap replica. The latter also provides an additional comparison

of the performance of the pointwise estimator with its bootstrap analogue. A good procedure should

be able to recognise the presence of a strong factor and leave it in the model with probability close

to 1. At the same time, faced with the useless factor, one needs to recognise it and eliminate from

the model, forcing the survival rate to be close to 0.

Consider the case of a correctly specified model, with 2 useful factors that are priced in the

20I am very grateful to Cesare Robotti for sharing the corresponding routines.
21The setting proxies the estimation of a 4-factor model on the set of portfolios similar to 25 size and book-to-market

and 17 industry portfolios. For a full description of the simulation design, please refer to Gospodinov et al. (2014a)
22The tc−statistic for a correctly specified model performs very similar to tm in terms of the factor survival rates.

Since it is not known ex ante, whether the model is correctly specified or not, I focus on the outcome of the tm test.
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cross-section of asset returns, 1 useful, but unpriced factor (with a risk premium equal to zero), and

a useless factor, presented in the top panel of Table V. The useless factor is correctly identified and

effectively eliminated from the model by both the misspecification-robust t−test and the Pen-FM

estimator even for a very small sample size (e.g. for a time series of 100 observations, the useless

factor is retained in the model in no more than 1% of the simulations. For the smallest sample size

of 50 observations, Pen-FM seems also to outperform the sequential elimination procedure, since it

retained the useless factor in less than 1.5% of the models only, while the latter was keeping it as

part of the specification in roughly 15% of the simulations.

The tm-test is designed to eliminate not only the useless factors from the linear model, but also

those factors that are strongly correlated with asset returns, but not priced in the cross-section of

returns. As a result, in 95-99% of cases the useful factor with λ = 0 is also eliminated from the

model. However, the Pen-FM estimator eliminates only the impact of useless factors, and thus

retains its presence in the model in 92-98% of the simulations, depending on the sample size.

[ TABLE V ABOUT HERE ]

Small sample simulations also seem to highlight an unfortunate propensity of the tm-test to

eliminate even strong factors from the model, when the span of the data is not sufficiently large.

For example, when the sample size is only about 200 observations, the strong factor is mistakenly

identified as a useless one in 40-50% of the simulations. When T = 50, the survival rates for the

strong factors are accordingly only 6 and 11%. The inference is restored once the sample size is

increased to about 600 observations (which would correspond empirically to roughly 50 years of

monthly observations). However, the small sample performance of the tm-test raises some caution

with regard to its application, and interpretation of the results for models that rely on quarterly or

yearly data, where the sample size is rather small. At the same time, the Pen-FM estimator seems

to be quite promising in this regard, because it retains strong factors in the model with a very high

probability (the first strong factor is retained in 99.9% of the cases for all the sample sizes, while the

second one is retained in 92-98% of the simulations). It also worth highlghting that the pointwise

and bootstrap shrinkage rates of Pen-FM are very close to each other, with the difference within

2%, supporting the notion that bootstrap replicas approximate the pointwise distribution of the
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estimates rather well, even with a very small sample size.

The second panel presents similar findings for a correctly specified model with 2 useful (and

priced) and two useless factors. The results are quite similar - both approaches are able to identify

the presence of irrelevant factors starting from a very small sample size (again, for T = 50, Pen-

FM seems to have a little advantage). At the same time, for a small to moderate sample, the

tm-statistic tends to eliminate strong factors, as well as the weak ones, while Pen-FM remains

consistent in keeping those variables in the model.

Panel B in Table V presents the case of a misspecified model. The results are quite similar,

for both the tm-test and the Pen-FM estimator correctly identify the presence of a useless factor

and either shrink it to 0 or eliminate from the model. As before, however, in the small sample the

tm-statistic tends to mistakenly identify a strong factor as a weak one with a rather high probability;

however, correct factor classification is restored at a sample size of at least 600 observations. Again,

Pen-FM estimator seems to outperform the sequential elimination procedure in a finite sample.

The only difference arises for T = 50, when the Pen-FM retains the second strong factor in only

77-78% of the simulations compared with the usual 92-95% observed for this sample size in other

simulations designs. However, this is still substantially better than the 8% survival rate produced

by the sequential elimination procedure; for T = 100 the strong factor is retained already in 91-92%

of the simulations.

These simulation results suggest that the tm-test is rather conservative with regard to the factor

elimination, and in a small sample could result in mistakenly excluding a true risk driver from the

model. Pen-FM seems to be better at deciphering the strength of a factor even for such a small

sample size as 50 time series observations, therefore, making it more reliable when working with

quarterly or yearly data, where the sample size is naturally small.

Table VI summarises the factor survival rates produced by the adaptive lasso in the same

simulation design of Gospodinov et al. (2014a). As discussed in Section III, when the model is no

longer identified, the adaptive lasso is not expected to correctly identify the factors that are priced

in the cross-section of asset returns.

λ̂AdL = arg min
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

k∑
j=1

1

|λ̂j,ols|d
|λj |,
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When the model includes useless factors, prior OLS-based estimates of the risk premia that define

the individual weights in the penalty no longer have the desired properties, since weak identification

contaminates their estimation. As a result, adaptive lasso produces erratic behaviour for the second

stage estimates, potentially shrinking true risk drivers and/or retaining the useless ones. Particular

shrinkage rates will depend on the strength of the factor, its relation to the other variables, and the

prior estimates of the risk premia.

Table VI summarises the average factor survival rates produced by the Pen-FM estimator with

d = 4 and η = σ̄ (the baseline scenario) with those of the adaptive lasso, when the tuning parameter

is chosen via the BIC23.

[ TABLE VI ABOUT HERE ]

For a correctly specified model (Panel A), the adaptive lasso nearly always retains the second

useful factor, but not the first, which is often eliminated from the model for a relatively moderate

sample size (e.g. when T = 250, it is retained in only 62.6% of the simulations). Furthermore,

unlike the Pen-FM, the adaptive lasso estmator is not able to recognise the presence of a useless

factor, and it is never eliminated.

If the model is misspecified, the impact of the identification failure on the original penalty weights

is particularly severe, which results in worse factor survival rates for the adaptive lasso. The first

of the useful factors is eliminated from the model with a high probability (e.g. for T = 250, it

is retained only in 45.66% and 34.31%of the simulations, respectively, depending on whether the

simulation design includes 1 or 2 useless factors). The second useless factor is always retained in the

model, and the first one increasingly so (e.g. for a sample of 50 observations it is a part of the model

in 56.54% of the simulations, while for T = 1000 already in 96.18%). This finding is expected, since

as the sample size increases, the risk premia for the useless factors in the misspecified models tend

to grow larger (along with their t-statistic) and the adaptive lasso penalty becomes automatically

smaller, suggesting that it would be useful to preserve such factors in the model. The simulations

confirm the different nature of the estimators and a quite drastic difference in the estimation of risk

premia parameters in the presence of useless factors.

23I am grateful to Dennis D. Boos for sharing his R routine, which is available at his webpage,
http://www4.stat.ncsu.edu/ boos/var.select/lasso.adaptive.html
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VI. Empirical applications

A. Data description

I apply the Pen-FM estimator to a large set of models that have been proposed in the empirical

literature, and study how using different estimation techniques may alter parameter estimates and

the assessment of model model pricing ability24. I focus on the following list of models/factors for

the cross-section of stock returns.

CAPM . The model is estimated using monthly excess returns on a cross-section of 25 Fama-

French portfolios, sorted by size and book-to-market ratio. I use 1-month Treasury rate as a proxy

for the risk-free rate of return. The market portfolio is the value-weighted return of all CRSP firms

incorporated in the US and listed on the NYSE, AMEX, or NASDAQ. Data is taken from Kenneth

French website. To be consistent with other applications, relying on tradable factors, I consider the

period of January 1972 - December, 201325.

Fama-French 3 factor model . The model is estimated using monthly excess returns on a cross-

section of 25 Fama-French portfolios, sorted by size and book-to-market ratio. I use 1-month

Treasury rate as a proxy for the risk-free rate of return. Following Fama and French (1992), I use

market excess return, SMB and HML as the risk factors. SMB is a zero-investment portfolio formed

by a long position on the stocks with small capitalisation (cap), and a short position on big cap

stocks. HML is constructed in a similar way, going long on high book-to-market (B/M) stocks and

short on low B/M stocks.

Carhart 4 factor model . I consider two cross-sections of asset returns to test the Carhart (1997)

model: 25 Fama-French portfolios, sorted by size and book-to-market, and 25 Fama-French portfo-

lios, sorted by value and momentum. In addition to the 3 Fama-French factors, the model includes

the momentum factor (UMD), a zero-cost portfolio constructed by going long the previous 12-month

return winners and short the previous 12-month loser stocks.

24I have applied the new estimator to a wide set of models; however, for reasons of brevity, in this paper I focus on
a particular subset. Additional empirical results are available upon request.

25I have also estimated the models, using other time samples, e.g. the largest currently available, 1947-2013,
1961-2013, or the samples used at the time of the papers publication. There was no qualitative difference between
the relative performance of Pen-FM and the Fama-MacBeth estimator (i.e. if the factor has been identified as a
strong/weak one, it continues to be so when a different time span is used to estimate the model). Additional empirical
results are available upon request.

40



“Quality-minus-junk”. A quality-minus-junk factor (QMJ), suggested in Asness et al. (2014), is

constructed by forming a long/short portfolio of stocks sorted by their quality (which is measured

by profitability, growth, safety and payout). I use the set of excess returns on Fama-French 25

portfolios, sorted by size and book-to-market as the test assets, and consider a 4 factor model,

which includes market excess return, SMB, HML and QMJ.

q-factor model . I consider the so-called q-factor model, various specifications of which have

been suggested in the prior literature linking stock performance to investment-related factors (e.g.

Liu, Whited, and Zhang (2009), Hou et al. (2014), Li and Zhang (2010)). I consider the 4 factor

specification adopted in Hou et al. (2014), and that includes market excess return, the size factor

(ME), reflecting the difference between the portfolios of large and small stocks, the investment factor

(I/A), reflecting the difference in returns on stocks with high/low investment-to-assets ratio, and

the profitability factor, built in a similar way from sorting stocks on their return-on-equity (ROE)26.

I apply the model to several collections of test assets: excess returns on 25 Fama-French portfolios

sorted by size and book-to-market, 25 Fama-French portfolios sorted by value and momentum, 10

portfolios sorted on momentum, and 25 portfolios sorted on price/earnings ratio.

cay-CAPM . This is the version of scaled CAPM suggested by Lettau and Ludvigson (2001b); it

uses the long-run consumption-wealth cointegration relationship in addition to the market factor and

their interaction term. I replicate their results for exactly the same time sample and a cross-section

of the portfolios that were used in the original paper. The data is quarterly, 1963Q3-1998Q3.

cay-CCAPM . Similar to cay-CAPM, the model relies on nondurable consumption growth, cay,

and their interaction term.

Human Capital CAPM . Jagannathan and Wang (1996) suggested using return on human capital

(proxied by after-tax-labour income), as an additional factor for the cross-section of stock returns.

I estimate the model on the same dataset, as in Lettau and Ludvigson (2001b).

Durable consumption model . Yogo (2006) suggested a model of the representative agent, deriving

utility from the flow of nondurable goods, and the stock of durables. In the linearised version, the

model includes three factors: market excess returns and nondurable/durable consumption growth.

I estimate the model using several cross-sections of the asset returns that were used in the original

paper: 25 portfolios sorted by size and book-to-market, 24 portfolios sorted by book-to-market

26I am very grateful to Lu Zhang and Chen Xue for sharing the factors data
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within industry, and 24 portfolios sorted by market and HML betas. The data is quarterly, 1951Q3-

2001Q4.

B. Tradable factors and the cross-section of stock returns

Panel A in Table VII below summarises the estimation of the linear factor models that rely

on tradable factors. For each of the specifications, I provide the p-value of the Wald test27 for the

corresponding factor betas to be jointly equal to 0. I also apply the sequential elimination procedure

of Gospodinov et al. (2014a), based on the tm test statistic28 and indicate whether a particular factor

survives it. I then proceed to estimate the models using the standard Fama-MacBeth approach and

Pen-FM, using the identity weight matrix. For the estimates produced by the Fama-MacBeth

cross-sectional regression, I provide standard errors and p-values, based on t-statistics with and

without Shanken correction, and the p-values based on 10,000 replicas of the stationary bootstrap

of Politis and Romano (1994), and cross-sectional R2 of the model fit. For the Pen-FM estimator, I

provide the point estimates of risk premia, their average bootstrap shrinkage rates, bootstrap-based

p-values and cross-sectional R2. To be consistent, when discussing the statistical significance of

the parameters, I refer to bootstrap-based p-values for both estimators. Greyshading indicates the

factors that are identified as weak (or irrelevant) and eliminated from the model by Pen-FM.

[ TABLE VII ABOUT HERE ]

There is no difference whether CAPM parameters are estimated by the Fama-MacBeth or the

Pen-FM estimator. Both methods deliver identical risk premia (-0.558% per month for market excess

return), bootstrap-based p-values and R2 (13%). A similar result is obtained when I estimate the

Fama-French 3 factor model, where both methods deliver identical pricing performance. Market

premium is significant at 10%, but negative. This is consistent with other empirical estimates of the

market risk premium (e.g. Lettau and Ludvigson (2001b) also report a negative, but insignificant

market premium for the cross-section of quarterly returns). HML, however, is significant and seems

to be a strong factor. Overall, the model captures a large share of the cross-sectional variation, as

27I use heteroscedasticity and autocorrelation-robust standard errors, based on the lag truncation rule in Andrews
(1991)

28Since it is not known ex ante, whether the model is correctly specified or not, I use the misspecification-robust
test
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indicated by the in-sample value of R2 at 71%. The common intercept, however, is still quite large,

at about 1.3%. There is no significant shrinkage for any of the factors in bootstrap, either, and the

parameter estimates are nearly identical.

Including the quality-minus-junk factor improves the fit of the model, as R2 increases from 71 to

83-84%. The QMJ factor risk premium is set exactly to 0 in 8.4% of bootstrap replicas; however, its

impact remains significant at 10%, providing further evidence that including this factor improves the

pricing ability of the model. In the Fama-MacBeth estimation, the common intercept was weakly

significant at 10%, however, in the case of Pen-FM, it is no longer significant, decreasing from 0.7

to 0.57% (which is partly due to a slightly larger risk premium for HML).

The Carhart (1997) 4-factor model is estimated on two cross-sections of porfolios, highlighting

a rather interesting, but at the same time expected, finding, that the sorting mechanism used in

portfolio construction affects the pricing ability of the factors. When I estimate the 4-factor model

on the cross-section of 25 portfolios, sorted by size and book-to-market ratio, momentum factor

is identified by the Pen-FM estimator as the irrelevant one, since the correponsing risk premia is

shrunk exactly to 0 in 99.6% of the bootstrap replicas. As a result of this elimination, cross-sectional

R2 in the model estimated by Pen-FM is the same as for the 3-factor Fama-French model, 71%.

On the other hand, when portfolios are sorted on value and momentum, HML is indicated as the

irrelevant one, while momentum clearly drives most of the cross-sectional variation. Both models

exhibit the same R2, 90%. Interestingly, once HML is eliminated by Pen-FM from the model, the

risk premium on SMB becomes weakly significant at 10%, recovering the true impact of the size

factor. This illustration of different pricing ability of the risk factors, when facing different cross-

sections of asset returns, is not new, but it is interesting to note that the impact can be so strong

as to affect the model identification.

Hou et al. (2014) suggest a 4 factor model that, the authors claim, manages to explain most of

the puzzles in empirical finance literature, with the main contribution coming from investment and

profitability factors. Their specification outperforms Fama-French and Carhart models with regards

to many anomalies, including operating accrual, R&D-to-market and momentum. Therefore, it

seems to be particularly interesting to assess model performance on various test assets. For 25

Fama-French portfolios, the profitability factor impact is not strongly identified, as it is eliminated

from the model in 82.2% of the bootstrap replica. At the same time, investment remains a significant
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determinant of the cross-sectional variation, commanding a premium of 0.36%. A different outcome

is observed when using the cross-section of stocks sorted by value and momentum. In this case the

profitability factor is removed from the model as the weak one. Size and ROE factors are identified

as strong determinants of the cross-sectional variation of returns, with risk premia estimates of

0.484% and 0.63% accordingly. It is interesting to note that, although the I/A factor is eliminated

from the model, the cross-sectional R2 remains at the same high level of 88%.

A particular strength of the profitability factor becomes apparent when evaluating its perfor-

mance on the cross-section of stocks sorted on momentum. When the conventional Fama-MacBeth

estimator is applied to the data, none of the factors command a significant risk premium, although

the model explains 93% of the cross-sectional dispersion in portfolio excess returns. Looking at

the estimates produced by Pen-FM, one can easily account for this finding: it seems that size and

investment factors are only weakly related to momentum-sorted portfolio returns, while it is the

profitability factor that drives nearly all of their variation. The model delivers a positive (but highly

insignificant) market risk premium, and a large and positive risk premium for ROE (0.742%). Al-

though both M/E and I/A are eliminated from the model, the cross-sectional R2 is at an impressive

level of 90%. This may be due to an identification failure, caused by the presence of useless (or

weak) factors, which was masking the impact of the true risk drivers.

When stocks are sorted in portfolios based on their price/earnings ratio, the Fama-MacBeth

estimator results in high cross-sectional R2 (81%), but insignificant risk premia for all the four

factors, and a rather large average mispricing at 2.71%. In contrast, the Pen-FM estimator shrinks

the impact of the size and profitability factors (which are elimininated in 96.8% and 84.5% of the

bootstrap replicas, respectively). As a result, investment becomes weakly significant, commanding

a premium of 0.44%, the market premium is also positive (but insignificant) at 0.27%, while the

common intercept, which is often viewed as the sign of model misspecification, is only 0.25% (and

insignificant). The model again highlights the ability of the Pen-FM estimator to identify and

eliminate weak factors from the cross-section of returns, while maintaining the impact of the strong

ones. In particular, investment and market factors alone explain 76% of the cross-sectional variation

in portfolios, sorted by the P/E ratio.
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C. Nontradable factors and the cross-section of stock returns

Standard consumption-based asset pricing models feature a representative agent who trades in

financial securities in order to optimize her consumption flow (e.g. Lucas (1976), Breeden (1979)).

In this framework the only source of risk is related to the fluctuations in consumption, and hence, all

the assets are priced in accordance with their ability to hedge against it. In the simplest version of

the CCAPM, the risk premium associated with a particular security is proportional to its covariance

with the consumption growth:

E[Rei ] ≈ λ cov
(
Ret,i,∆c

)
If the agent has the CRRA utility function, λ is directly related to the relative risk aversion, γ, and

hence, one of the natural tests of the model consists in estimating this parameter and comparing

it with the plausible values for the risk aversion (i.e. < 10). Mehra and Prescott (1985) and Weil

(1989) show that in order to match historical data, one would need to have a coefficient of risk

aversion much larger than any plausible empirically supported value, thus leading to the so-called

equity premium and risk-free rate puzzles. The model was strongly rejected on US data (Hansen

and Singleton (1982), Hansen and Singleton (1983), Mankiw and Shapiro (1986)), but led to a

tremendous growth in the consumption-based asset pricing literature, which largely developed in

two main directions: modifying the model framework in terms of preferences, production sector and

various frictions related to decision-making, or highlighting the impact of the data used to validate

the model29.

Not only the estimates of the risk aversion parameter turn out to be unrealistically large, but

they are also characterised by extremely wide confidence bounds (e.g. Yogo (2006) reports γ̂ = 142

with the standard errors of 25 when estimating the CCAPM using the Fama-French 25 portfolios).

The impact of low covariance between consumption and asset returns could not merely explain a

high estimate of the risk aversion, but also lead to the models being weakly identified, implying

a potential loss of consistency, nonstandard asymptotic distribution for the conventional OLS or

GMM estimators, and the need to rely on identification-robust inference procedures.

Panel B in Table VII reports estimation of some widely used empirical models, relying on

nontradable factors, such as consumption. The scaled version of CAPM, motivated by the long-run

29The literature on consumption-based asset pricing is vast; for an overview see Campbell (2003) and Ludvigson
(2013)

45



relationship between conumption and wealth dynamics in Lettau and Ludvigson (2001a), seems to

be rather weakly identified, as both cay and its product with the market return are eliminated from

the model by the Pen-FM estimator in 97.6% and 85.1% of the bootstrap replicas, respectively. The

resulting specification includes only the market excess return as the only factor for the cross-section

of quarterly stock returns, which leads to the well-known illustration of the inability of the classical

CAPM to explain any cross-sectional variation, delivering the R2 of only 1%. The scaled version of

Consumption-CAPM also seems to be contaminated by identification failure. Not only the estimates

of the risk preia of all three factors are shrunk to 0 with a very high frequency, but even the Wald

test for the vector of betas indicates nondurable consumption growth as a rather weak risk factor.

This finding provides a new aspect to the well-known failure of the CCAPM and similar speci-

fications to both match the equity premium and explain the cross-sectional variation in returns.

One of the natural solutions to the problem could lie in using alternative measures for con-

sumption and investment horizons. Kroencke (2014) explicitly models the filtering process used to

construct NIPA time series, and finds that the unfiltered flow consumption produces a much better

fit of the basic consumption-based asset pricing model and substantially lowers the required level

of risk aversion. Daniel and Marshall (1997) show that while the contemporaneous correlation of

consumption growth and returns is quite low for the quarterly data, it is substantially increased at

lower frequency. This finding would be consistent with investors’ rebalancing their portfolios over

longer periods of time, either due to transaction costs (market frictions or the costs of information

processing), or due to external constraints (e.g. some of the calendar effects). Lynch (1996) fur-

ther studies the effect of decision frequency and its synchronisation between agents, demonstrating

that it could naturally result in a lower contemporaneous correlation between consumption risk and

returns. Jagannathan and Wang (2007) state that investors are more likely to make decisions at

the end of the year, and, hence, consumption growth, if evaluated then, would be a more likely

determinant of the asset returns. These papers could also be viewed as a means to improve model

identification.

Jagannathan and Wang (1996) and Santos and Veronesi (2006) argue that human capital (HC)

should be an important risk driver for financial securities. I estimate their HC-CAPM on the

dataset used in Lettau and Ludvigson (2001b), and find that this model is also contaminated by

the identification problem. While the true risk factor may command a significant premium, the
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model is still poorly identified, as indicated by Table VII, and after-tax labour income, as a proxy

for human capital, is eliminated by Pen-FM from the model for stock returns. The scaled version

of the HC-CAPM also seems to be weakly identified, since the only robust risk factor seems to be

market excess return.

Unlike the baseline models that mainly focus on nondurable consumption goods and services,

Yogo (2006) argues that the stock of durables is an important driver of financial returns, and

taking it into account substantially improves the ability of the model to match not only the level

of aggregate variables (e.g. the equity premium, or the risk-free rate), but also the cross-sectional

spread in portfolios, sorted on various characteristics. Table VII illustrates the estimation of durable

consumption CAPM, that includes market returns, as well as durable and nondurable consumption

growth as factors on several cross-sections of portfolios. Both consumption-related factors seem to

be rather weak drivers for the cross-section of stocks, and are eliminated in roughly 99% of the

bootstrap replicas. This finding is also robust across the different sets of portfolios. Once the weak

factors are eliminated from the model, only the market excess return remains; however, its price of

risk is negative and insignificant, while the resulting R2 is rather low at only 1-11%.

One of the potential explanations behind such a subpar performance of the nontradable risk

factors consists in the measurement error problem. Indeed, if the nondurable consumption growth

(or any other variable) is observed with a measurement error, it causes an attenuation bias in the

estimates of betas, which could in turn lead to a weak factor problem in small sample30. I address

this issue by constructing mimicking portfolios of the nontradable factors using a simple linear

projection on the cross-section of the corresponding stock returns. By construction, the resulting

projection preserves the pricing impact of the original variable, however, it does not have the same

measurement error component, as before.

Table VIII illustrates the use of mimicking portfolios for some of the models with nontradable

factors. While there is considerable improvement in the performance of the nondurable consumption

(unless the market return is also included into the model), the main finding remains unchanged: the

model still suffer from the identification failures. Cross-products of the consumption-to-wealth ratio

and consumption, durable consumption growth, labour and its cross-product still do not generate

30Note, that the classical measurement error leads to a a multiplicative attenuation bias, and therefore can be the
sole reason for the lack of identification. In finite sample, however, its presence makes the inference unreliable and, if
large enough, could substantially exacerbate the underlying problem
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enough asset exposure to the risk factors to identify the associated risk premia, even when used as

mimicking portfolios.

VII. Conclusion

Identification conditions play a major role in model estimation, and one must be very cau-

tious when trying to draw quantitaive results from the data without considering this property first.

While in some cases this requirement is fairly easy to test, the use of more complicated techniques

sometimes makes it more difficult to analyze. This paper deals with one particular case of un-

deridentification: the presence of useless factors in the linear asset pricing models. I proposed a

new estimator that can be used simulatenously as a model diagnostic and estimation technique for

the risk premia parameters. While automatically eliminating the impact of the factors that are

either weakly correlated with asset returns (or do not correlate at all), the method restores the

identification of the strong factors in the model, their estimation accuracy, and quality of fit.

Applying this new technique to real data, I find support for the pricing ability of several tradable

factors (e.g. the three Fama-French factors or the ‘quality-minus-junk’ factor). I further demonstrate

that the profitability factor largely drives the cross-section of momentum-sorted portfolios, contrary

to the outcome of the standard Fama-MacBeth estimation.

It seems that much of the cross-sectional research with nontradable factors, however, should also

be considered through the prism of model identification, as nearly all the specifications cosidered

are contaminated by the problem of rank deficiency. How and whether the situation is improved

in nonlinear models are undoubtedly very important questions, and form an interesting agenda for

future research.
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Table I. Estimates of risk premia in a correctly specified model

True parameter Mean Estimate Bias MSE Mean shrinkage

value Oracle FM Pen-FM Oracle FM Pen-FM Oracle FM Pen-FM rate

Panel A: T=30
Intercept 3.277 3.265 3.273 3.25 -0.012 -0.004 -0.027 2.259 2.26 2.203 0

Useful factor -0.647 -0.673 -0.672 -0.659 -0.026 -0.026 -0.012 2.25 2.247 2.196 0.007
Useless factor - - 0.002 0 - 0.002 0 - 0.317 0 1

Panel B: T=50
Intercept 3.277 3.17 3.149 3.173 -0.107 -0.128 -0.104 1.877 1.837 1.848 0

Useful factor -0.647 -0.553 -0.533 -0.556 0.093 0.114 0.091 1.875 1.827 1.848 0.009
Useless factor - - 0.01 0 - 0.01 0 - 0.314 0 1

Panel C: T=100
Intercept 3.277 3.213 3.195 3.21 -0.064 -0.082 -0.067 1.449 1.447 1.444 0

Useful factor -0.647 -0.593 -0.575 -0.591 0.054 0.072 0.056 1.421 1.427 1.417 0.003
Useless factor - - 0.01 0 - 0.01 0 - 0.318 0 1

Panel D: T=250
Intercept 3.277 3.267 3.271 3.266 -0.011 -0.007 -0.011 0.902 0.894 0.901 0

Useful factor -0.647 -0.642 -0.648 -0.642 0.005 -0.001 0.005 0.887 0.885 0.886 0
Useless factor - - -0.002 0 - -0.002 0 - 0.325 0 1

Panel E: T=500
Intercept 3.277 3.277 3.281 3.276 -0.001 0.004 -0.001 0.628 0.647 0.628 0

Useful factor -0.647 -0.645 -0.65 -0.645 0.001 -0.003 0.002 0.627 0.646 0.627 0
Useless factor - - 0.007 0 - 0.007 0 - 0.31 0 1

Panel F: T=1000
Intercept 3.277 3.286 3.278 3.286 0.009 0 0.009 0.435 0.441 0.435 0

Useful factor -0.647 -0.655 -0.646 -0.654 -0.008 0.001 -0.008 0.421 0.431 0.421 0
Useless factor - -0.012 0 - -0.012 0 - 0.321 0 1

Note. The table summarises the properties of the Fama-MacBeth and Pen-FM estimators with an identity weight
matrix in a model for 25 portfolios with a common intercept and one true factor driving the returns. λ0 is the
value of the intercept, λ1 and λ2 are the corresponding risk premia of the true risk factor and the useless one. The
model is simulated 10 000 times for different values of the sample size (T). The ”Oracle” estimator corresponds to
the Fama-MacBeth procedure omitting the useless factor, ”FM” and ”Pen-FM” stand for the Fama-MacBeth and
Pen-FM estimators in the model with a useful and a useless factor. The table presents the mean point estimates of
the parameters, their bias, and the mean squared error (MSE). The mean shrinkage rate corresponds to the average
percentage of times the corresponding coefficient was set to exactly 0 during 10,000 simulations.

Returns are generated from the multivariate normal distribution with the mean and variance-covariance ma-
trix equal to those of the nominal quarterly excess returns on 25 Fama-French portfolios sorted by size and
book-to-market ratio during the period 1962Q2 : 2014Q2. The useful factor drives the cross-section of asset returns,
and is calibrated to have the same mean and variance as the quarterly excess return on the market. The useless factor
is generated from a multivariate normal distribution with the mean and variance equal to their sample analogues of
nondurable consumption growth for the same time period. Betas, common intercept and risk premium for the useful
factor come from the Fama-MacBeth estimates of a one factor model with market excess return estimated on the
cross-section of the 25 Fama-French portfolios.
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Table II. Estimates of risk premia in a missspecified model

True parameter Mean Estimate Bias MSE Mean shrinkage

value (λ) Oracle FM Pen-FM Oracle FM Pen-FM Oracle FM Pen-FM rate

Panel A: T=30
Intercept 3.315 3.192 3.041 3.149 -0.123 -0.274 -0.166 1.287 1.514 1.253 0

Useful factor -1.316 -0.619 -0.629 -0.578 0.698 0.687 0.739 1.392 1.58 1.378 0.022
Useless factor - -0.019 0 - -0.019 0 - 0.34 0 1

Panel B: T=50
Intercept 3.315 3.184 3.053 3.177 -0.132 -0.262 -0.138 1.105 1.456 1.097 0

Useful factor -1.316 -0.592 -0.621 -0.587 0.724 0.696 0.729 1.252 1.542 1.25 0.014
Useless factor - -0.021 0 - -0.021 0 - 0.445 0 1

Panel C: T=100
Intercept 3.315 3.253 3.142 3.247 -0.062 -0.173 -0.068 0.781 1.318 0.78 0

Useful factor -1.316 -0.639 -0.692 -0.634 0.677 0.624 0.682 0.986 1.407 0.989 0.003
Useless factor - 0.021 0 - 0.021 0 - 0.605 0 1

Panel D: T=250
Intercept 3.315 3.261 3.159 3.259 -0.054 -0.156 -0.057 0.488 1.138 0.488 0

Useful factor -1.316 -0.637 -0.708 -0.635 0.679 0.609 0.681 0.814 1.255 0.816 0
Useless factor - -0.004 0 - -0.004 0 - 0.979 0 1

Panel E: T=500
Intercept 3.315 3.276 3.246 3.275 -0.04 -0.069 -0.04 0.363 1.117 0.363 0

Useful factor -1.316 -0.649 -0.794 -0.649 0.667 0.522 0.667 0.745 1.212 0.745 0
Useless factor - -0.008 0 - -0.008 0 - 1.374 0 1

Panel F: T=1000
Intercept 3.315 3.262 3.157 3.262 -0.053 -0.158 -0.053 0.255 1.053 0.255 0

Useful factor -1.316 -0.634 -0.703 -0.634 0.682 0.614 0.682 0.72 1.197 0.72 0
Useless factor - 0.049 0 - 0.049 0 - 1.979 0 1

Note. The table summarises the properties of the Fama-MacBeth and Pen-FM estimators with an identity weight
matrix in a model for 25 portfolios with a common intercept and 3 factors driving the returns, but with only the first
and a useless one considered in the estimation. λ0 is the value of the intercept; λ1 and λ2 are the corresponding risk
premia of the first useful factor and the useless one. The model is simulated 10,000 times for different values of the
sample size (T). The ”Oracle” estimator corresponds to the Fama-MacBeth procedure omitting the useless factor,
”FM” and ”Pen-FM” stand for the Fama-MacBeth and Pen-FM estimators in the model with a useful and a useless
factor. The table summarises the mean point estimates of the parameters, their bias and the mean squared error.
The mean shrinkage rate corresponds to the percentage of times the corresponding coefficient was set to exactly 0
during 10 000 simulations.

Returns are generated from the multivariate normal distribution with the mean and variance-covariance ma-
trix equal to those of the quarterly nominal excess returns on 25 Fama-French portfolios sorted on size and
book-to-market ratio during the period 1962Q2 : 2014Q2. Returns are simulated from a 3-factor model, the latter
calibrated to have the same mean and variance as the three Fama-French factors (market excess return, SMB and
HML portfolios). The useless factor is generated from a multivariate normal distribution with the mean and variance
equal to their sample analogues of nondurable consumption per capita growth rate during the same time period.
Betas, common intercept and risk premium for the useful factor come from the Fama-MacBeth estimates of a 3-factor
model on the cross-section of 25 Fama-French portfolios. In the estimation, however, only the market return and the
irrelevant factor are used; thus the source of misspecification is the omitted factors.
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Table III. Shrinkage rate dependence on the value of the tuning parameter d

Shrinkage rates for the
useful factor, λ1 6= 0 useless factor

T d = 3 d = 4 d = 5 d = 7 d = 10 d = 3 d = 4 d = 5 d = 7 d = 10
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Correctly specified model

30 0.0137 0.0032 0.0031 0.0014 0.0000 1.0000 0.9947 0.9915 0.9957 0.9981
50 0.0126 0.0011 0.0013 0.0012 0.0011 1.0000 0.9936 0.9926 0.9968 0.9992
100 0.0095 0.0010 0.0001 0.0002 0.0001 1.0000 0.9989 0.9987 1.0000 1.0000
250 0.0011 0.0001 0.0000 0.0001 0.0001 1.0000 1.0000 1.0000 1.0000 1.0000
500 0.0001 0.0001 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Misspecified model

30 0.0284 0.0063 0.0001 0.0001 0.0000 0.9968 0.9905 0.9821 0.9810 0.9989
50 0.0252 0.0011 0.0000 0.0000 0.0000 0.9976 0.9947 0.9768 0.9922 1.0000
100 0.0063 0.0001 0.0000 0.0000 0.0000 0.9978 0.9968 0.9905 1.0000 1.0000
250 0.0000 0.0000 0.0000 0.0000 0.0000 0.9998 0.9947 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0000 0.0000 0.0000 0.998 0.9999 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note. The table summarises the shrinkage rates for the useful/useless factor produced by the Pen-FM estimator for
various sample sizes (T) and a range of parameters, d = 2, 3, 5, 7, 10, when η0 is set at the average standard deviation
of the residuals from the first stage. Simulation designs for the correctly specified and misspecified models correspond
to those described in Tables I and II. Each sample is repeated 10,000 times.

Table IV. Shrinkage rate dependence on the value of the tuning parameter η0

Shrinkage rates for the
useful factor, λ1 6= 0 useless factor

T η0 = R̄e η0 = ln(σ2) η0 = σ̄ CV (5) CV (n− 1) η0 = R̄e η0 = ln(σ2) η0 = σ̄ CV (5) CV (n− 1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Correctly specified model

30 0.0008 0.0008 0.0031 0.0014 0.0000 0.9888 0.9873 0.9947 0.9957 0.9981
50 0.0016 0.0001 0.0010 0.0012 0.0011 0.9857 0.9944 0.9936 0.9968 0.9992
100 0.0000 0.0000 0.0007 0.0002 0.0001 0.9976 0.9960 0.9989 1.0000 1.0000
250 0.0000 0.0000 0.0001 0.0001 0.0001 0.9992 0.9992 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0001 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Misspecified model

30 0.0284 0.0063 0.0001 0.0001 0.0000 0.9968 0.9905 0.9640 0.9637 0.9989
50 0.0252 0.0011 0.0000 0.0000 0.0000 0.9976 0.9947 0.9749 0.9912 1.0000
100 0.0063 0.0001 0.0000 0.0000 0.0000 0.9978 0.9968 0.9975 0.9971 1.0000
250 0.0000 0.0000 0.0000 0.0000 0.0000 0.9998 0.9947 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0000 0.0000 0.0000 0.998 0.9999 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note. The table illustrates the shrinkage rates for the useful/useless factor produced by the Pen-FM estimator for
various sample sizes (T) and a range of parameters η0, while d = 4. Simulation designs for the correctly specified and
misspecified models correspond to those described in Tables I and II. Tuning parameter η0 is set to be equal to 1)
average excess return on the portfolio, 2)logarithm of average variance of the residuals from the first stage, 3) average
standard deviation of the residuals from the first stage, 4) the average value of the tuning parameter chosen by 5-fold
cross-validation, 5) the average value of the tuning parameter chosen by leave-one-out cross-validation. Each sample
is repeated 10,000 times.
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Table V. Survival rates of useful and irrelevant factors

Panel A: Correctly specified model

Useful Useful Useful Useless

(λ1 6= 0) (λ2 6= 0) (λ3 = 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0628 1 0.9995 0.1120 0.9166 0.9245 0.0588 0.9233 0.9426 0.1541 0 0.0126
100 0.1760 1 0.9997 0.2431 0.9403 0.9439 0.0207 0.9539 0.9606 0.0072 0 0.0079
150 0.3444 1 0.9998 0.4623 0.9652 0.9598 0.0232 0.9622 0.9695 0.0031 0 0.0053
200 0.5142 1 0.9998 0.6599 0.9787 0.9686 0.0231 0.9788 0.9749 0.0023 0 0.0040
250 0.6614 1 0.9998 0.8035 0.9761 0.9742 0.0231 0.9746 0.9786 0.0017 0 0.0032
600 0.9864 1 0.9998 0.9987 0.9802 0.9784 0.0141 0.9777 0.9813 0.0006 0 0.0027
1000 0.9999 1 0.9999 1.0000 0.9828 0.9815 0.0117 0.9833 0.9829 0.0003 0 0.0023

Useful Useful Useless Useless

(λ1 6= 0) (λ2 6= 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0573 1 0.9999 0.0984 1 1 0.1537 0 0.0164 0.1485 0 0.0232
100 0.1739 1 0.9999 0.2351 1 1 0.0068 0 0.0065 0.0085 0 0.0119
150 0.2020 1 1 0.2290 1 1 0.0080 0 0.0059 0.0032 0 0.0079
200 0.5265 1 1 0.6582 1 1 0.0017 0 0.0044 0.0025 0 0.0059
250 0.6742 1 1 0.8080 1 1 0.0015 0 0.0035 0.0015 0 0.0040
600 0.9880 1 1 0.9985 1 1 0.0007 0 0.0029 0.0003 0 0.0034
1000 1 1 1 0.9900 1 1 0.0000 0 0.0025 0.0002 0 0.0029

Panel B: Misspecified model

Useful Useful Useful Useless

(λ1 6= 0) (λ2 6= 0) (λ3 = 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0640 1 0.9995 0.1167 0.9453 0.9122 0.0676 0.9132 0.9437 0.1790 0 0.0133
100 0.1696 1 0.9996 0.2353 0.9617 0.9415 0.0224 0.9425 0.9614 0.0142 0 0.0075
150 0.3343 1 0.9997 0.4389 0.9733 0.9566 0.0221 0.9566 0.9699 0.0088 0 0.0052
200 0.5016 1 0.9998 0.6298 0.9787 0.9653 0.0240 0.9652 0.9751 0.0080 0 0.0039
250 0.6526 1 0.9998 0.7750 0.9826 0.9713 0.0238 0.9775 0.9786 0.0079 0 0.0031
600 0.9806 1 0.9998 0.9963 0.9850 0.9758 0.0138 0.9751 0.9812 0.0073 0 0.0026
1000 0.9972 1 0.9998 0.9989 0.9871 0.9792 0.0121 0.9764 0.9830 0.0088 0 0.0022

Useful Useful Useless Useless

(λ1 6= 0) (λ2 6= 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0406 1 0.9986 0.0815 0.7782 0.7805 0.1669 0 0.0228 0.1660 0 0.0279
100 0.0985 1 0.9992 0.1310 0.9246 0.9181 0.0138 0 0.0150 0.0141 0 0.0184
150 0.1928 1 0.9994 0.2493 0.9781 0.9744 0.0083 0 0.0123 0.0093 0 0.0134
200 0.3058 1 0.9996 0.3840 0.9793 0.9717 0.0074 0 0.0101 0.0081 0 0.0103
250 0.4221 1 0.9997 0.5180 0.9921 0.9927 0.0073 0 0.0082 0.0078 0 0.0087
600 0.9026 1 0.9997 0.9516 1 0.9980 0.0097 0 0.0069 0.0086 0 0.0073
1000 0.9822 1 0.9997 0.9922 1 1 0.0102 0 0.0059 0.0096 0 0.0063

Note. The table summarises the survival rates for the useful/useless factors in the simulations of a 4-factor model
(correctly or incorrectly specified) for different sample sizes. For each of the factors, I compute its survival rate
from 10,000 simulations, based on the tm statistic from Gospodinov et al. (2014a)(Table 4), the pointwise estimates
produced by the Pen-FM estimator (e.g. the frequency with which the risk premia estimate was not set exactly
to 0), and one minus the average shrinkage rate from the Pen-FM estimator in 10,000 bootstrap replicas. Panel A
presents the survival rates for the correctly specified model, when it is generated with 2 useful and 2 useless factors, or
a combination of 2 useful (and priced) factors, 1 useful (but not priced) and 1 useless factor. Panel B presents similar
results for a misspecified model. For a complete description of the simulation design, please refer to Gospodinov et al.
(2014a)
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Table VI. Comparison of the Pen-FM estimator with the adaptive lasso, based on the
survival rates of useful and useless factors.

Panel A: Correctly specified model

Useful Useful Useful Useless

(λ1 6= 0) (λ2 6= 0) (λ3 = 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.4172 0.9166 1 0.9233 0.7340 0 1
100 1 0.4745 0.9403 1 0.9539 0.8392 0 1
150 1 0.5173 0.9652 1 0.9622 0.9262 0 1
200 1 0.5743 0.9787 1 0.9748 0.9431 0 1
250 1 0.6260 0.9761 1 0.9746 0.9694 0 1
600 1 0.8132 0.9802 1 0.9777 1 0 1
1000 1 0.9099 0.9828 1 0.9833 1 0 1

Useful Useful Useless Useless

(λ1 6= 0) (λ2 6= 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 1 1 0.9322 0 1 0 1
100 1 1 1 0.9851 0 1 0 1
150 1 1 1 0.9955 0 1 0 1
200 1 1 1 1 0 1 0 1
250 1 1 1 1 0 1 0 1
600 1 1 1 1 0 1 0 1
1000 1 1 1 1 0 1 0 1

Panel B: Misspecified model

Useful Useful Useful Useless

(λ1 6= 0) (λ2 6= 0) (λ3 = 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.4691 0.9453 1 0.9132 0.6133 0 1
100 1 0.4782 0.9617 1 0.9424 0.7134 0 1
150 1 0.4784 0.9733 1 0.9566 0.7650 0 1
200 1 0.4870 0.9787 1 0.9652 0.7612 0 1
250 1 0.4566 0.9826 1 0.9775 0.8377 0 1
600 1 0.5179 0.9850 1 0.9751 0.9810 0 1
1000 1 0.6433 0.9989 1 0.9764 0.9959 0 1

Useful Useful Useless Useless

(λ1 6= 0) (λ2 6= 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.5352 0.7782 1 0 0.5654 0 1
100 1 0.4833 0.9246 1 0 0.6132 0 1
150 1 0.5090 0.9781 1 0 0.6911 0 1
200 1 0.4566 0.9793 1 0 0.7177 0 1
250 1 0.3431 0.9921 1 0 0.7432 0 1
600 1 0.3217 1 1 0 0.9210 0 1
1000 1 0.2918 1 1 0 0.9618 0 1

Note. The table summarises the survival rates for the useful/useless factors in the simulations of a 4-factor model
(correctly or incorrectly specified) for different sample sizes. For each of the factors, I compute its survival rate from
10,000 simulations, based on the shrinkage rate of Pen-FM estimator (d = 4 and ν0 = σ̄) in 10,000 bootstrap replicas.
I then compute the corresponding factor survival rates of the adaptive lasso with the tuning parameter chosen by
BIC. Panel A presents the survival rates for the correctly specified model when it is generated with 2 useful and 2
useless factors, or a combination of 2 useful (and priced), 1 useful (but not priced) factors, and 1 useless factor. Panel
B presents similar results for a misspecified model.

For a complete description of the simulation designs, please refer to Gospodinov et al. (2014a)
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Table VII. Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A: tradable factors

25 portfolios, sorted by size and book-to-market
CAPM Intercept - - 1.431*** 0.4282 0.0008 0.4325 0.0009 0.002 19 1.4307*** 0 0.002 19

MKT 0 yes -0.658 0.4256 0.1222 0.4764 0.1674 0.184 -0.658 0 0.184

25 portfolios, sorted by size and book-to-market
Fama and French Intercept - - 1.252 0.2987 0 0.3054 0 0 70 1.2533 0 0 70
(1992) MKT 0 yes -0.703* 0.3035 0.0205 0.3721 0.0587 0.06 -0.704* 0 0.06

SMB 0 yes 0.145 0.0291 0 0.1424 0.3083 0.376 0.145 0 0.376
HML 0 no 0.43*** 0.031 0 0.1376 0.0018 0.008 0.429*** 0 0.008

25 portfolios, sorted by size and book-to-market
”Quality-minus-junk” Intercept - - 0.7* 0.3257 0.0317 0.3422 0.0409 0.092 84 0.576 0 0.212 83
Asness, Frazzini MKT 0 yes -0.327 0.327 0.3177 0.4013 0.4155 0.412 -0.206 0 0.684
Pedersen (2014) SMB 0 yes 0.174 0.0217 0 0.1459 0.2325 0.288 0.172 0 0.292

HML 0 no 0.398** 0.0265 0 0.1387 0.0041 0.016 0.416*** 0 0.008
QMJ 0 no 0.44** 0.1102 0.0001 0.1599 0.006 0.016 0.324* 0.084 0.084

25 portfolios, sorted by size and book-to-market
Carhart Intercept - - 0.684** 0.3199 0.0325 0.381 0.0726 0.032 76 1.289*** 0 0 71
(1997) MKT 0 no -0.001 0.3208 0.998 0.411 0.9984 0.546 -0.648 0.001 0.085

SMB 0 no 0.111 0.0263 0 0.1044 0.2869 0.276 0.106 0.001 0.301
HML 0 yes 0.408*** 0.024 0 0.0997 0 0 0.385*** 0 0
UMD 0 no 2.257 0.5999 0.0002 0.7276 0.0019 0.29 0 0.996 0.996

25 portfolios sorted by value and momentum
Intercept - - 0.898 0.396 0.0233 0.4076 0.0275 0.12 90 1.074* 0 0.052 90
MKT 0 no -0.146 0.3765 0.6989 0.416 0.7263 0.724 -0.304 0.002 0.434
SMB 0 no 0.201 0.0696 0.0039 0.1227 0.1013 0.196 0.224* 0 0.1
HML 0 no 0.122 0.253 0.6305 0.2773 0.6608 0.832 0 0.374 0.87
UMD 0 yes 0.811*** 0.0258 0 0.1397 0 0 0.804*** 0 0

25 portfolios, sorted by size and book-to-market
q-factor model Intercept - - 1.045*** 0.3164 0.001 0.3354 0.0018 0.004 77 1.034*** 0 0 70
Hou, Xue and Zhang MKT 0 no -0.553 0.3168 0.0807 0.3937 0.16 0.166 -0.505 0 0.184
(2014) M/E 0 yes 0.363** 0.0542 0 0.1513 0.0165 0.05 0.255 0.002 0.158

I/A 0 yes 0.407*** 0.0976 0 0.1329 0.0022 0.004 0.363** 0.004 0.012
ROE 0 no 0.494** 0.2029 0.0148 0.2446 0.0432 0.042 0 0.822 0.822

25 portfolios sorted by value and momentum
Intercept - - 0.256 0.5046 0.6115 0.5381 0.6339 0.66 88 0.454 0 0.218 88
MKT 0 no 0.285 0.4758 0.5489 0.5474 0.6024 0.604 0.105 0.001 0.921
M/E 0 yes 0.5*** 0.0658 0 0.1566 0.0014 0.004 0.482*** 0 0.006
I/A 0 no 0.063 0.2438 0.796 0.273 0.8174 0.788 0 0.759 0.979
ROE 0 yes 0.665*** 0.1467 0 0.1951 0.0006 0.006 0.63*** 0 0.004
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Table VII. Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

10 portfolios sorted on momentum
Intercept - - 1.164 0.7529 0.1222 0.8086 0.1502 0.432 93 -0.064 0 0.582 90
MKT 0 no -0.631 0.7234 0.3834 0.8037 0.4327 0.73 0.578 0.001 0.951
M/E 0 yes 0.73 0.7362 0.3213 0.803 0.3632 0.614 0 0.968 0.968
I/A 0 no 0.02 0.5142 0.9685 0.5585 0.971 0.91 0 0.582 0.6
ROE 0 yes 0.468 0.3192 0.1425 0.3621 0.1961 0.206 0.742** 0.005 0.033

19 portfolios sorted by P/E ratio
Intercept - - 2.71 1.447 0.0611 1.7586 0.1233 0.504 81 0.2578 0 0.544 76
MKT 0 yes -2.124 1.4002 0.1293 1.714 0.2153 0.7 0.272 0 0.968
M/E 0 yes 1.132 0.5639 0.0447 0.6995 0.1056 0.54 0 0.957 0.967
I/A 0 no 0.056 0.2395 0.8144 0.3027 0.8527 0.374 0.443* 0.051 0.095
ROE 0 no 0.072 0.281 0.798 0.3609 0.842 0.946 0 0.669 0.845

Panel B: nontradable factors

25 portfolios sorted by size and book-to-market
Lettau and Ludvigson
(2001) Intercept - - 3.24 0.6601 0 0.7261 0 0 16 3.8128 0.0000 0 0

∆c 0.0061 no 0.216 0.1653 0.1922 0.1861 0.2468 0.398 0 0.889 0.975

Intercept - - 3.681** 0.9501 0.0001 1.4126 0.0092 0.012 31 4.106*** 0 0.004 1
cay 0.2006 no -0.516 2.1813 0.813 3.3786 0.8786 0.518 0 0.958 0.976

(scaled CAPM) MKT 0 no -0.056 0.9751 0.9545 1.6072 0.9724 0.72 -0.251 0 0.902
cay× MKT 0 no 1.136 0.3035 0.0002 0.4602 0.0136 0.398 0 0.839 0.851

(scaled CCAPM) Intercept - - 4.281*** 0.7043 0 1.0093 0 0 70 4.958*** 0 0 25
cay 0.001 no -0.125 0.2784 0.6526 0.41 0.7599 0.584 -0.385 0.319 0.513
∆c 0.7378 no 0.024 0.1095 0.8292 0.1619 0.884 0.654 0 0.689 0.721
cay ×∆c 0.0002 no 0.057 0.0171 0.0009 0.0254 0.0246 0.298 0 0.989 0.989

(HC-CAPM) Intercept - - 4.467*** 0.9389 0 1.684 0.008 0.008 58 4.160*** 0.0000 0 1
MKT 0 no -1.097 0.9322 0.2392 1.81 0.5445 0.798 -0.296 0 0.918
∆y 0.6566 no 1.259 0.3641 0.0005 0.6569 0.0552 0.1 0 0.815 0.815

(scaled HC-CAPM) Intercept - - 5.184*** 0.9293 0 1.5628 0.0009 0.016 77 4.268*** 0 0.002 7
cay 0.0534 no -0.445 0.2629 0.0908 0.4521 0.3254 0.502 0 0.987 0.987
MKT 0 no -1.987 0.9226 0.0313 1.6995 0.2424 0.564 -0.438 0 0.8
∆y 0.3859 no 0.557 0.254 0.0282 0.4331 0.1982 0.23 0 0.792 0.792
cay× MKT 0 no 0.341 0.1841 0.0643 0.3225 0.2908 0.422 0 0.858 0.87
cay ×∆y 0.5135 no -0.167 0.0678 0.014 0.1153 0.1485 0.422 -0.009 0.809 0.809
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Table VII. Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

25 portfolios, sorted by size and book-to-market
Durable Intercept - - 2.335** 0.9331 0.0123 1.5056 0.1209 0.03 55 3.445*** 0 0.002 11
consumption CAPM ∆cndur 0.1116 no 0.641 0.2197 0.0035 0.3565 0.0721 0.126 0 0.974 0.974

∆cdur 0.6711 no 0.013 0.1305 0.9215 0.2139 0.952 0.884 0 0.99 0.996
MKT 0 no -0.152 0.9662 0.8754 1.6615 0.9273 0.592 -1.03 0.001 0.359

24 portfolios, sorted by book-to-market within industry
Intercept - - 1.767 0.862 0.0404 0.9431 0.061 0.414 11 1.317 0 0.344 3
∆cndur 0.1513 no 0.232 0.1061 0.029 0.1221 0.0579 0.526 0 0.993 0.995
∆cdur 0.6878 no -0.002 0.1836 0.9891 0.2043 0.9902 0.738 0 0.976 0.998
MKT 0 no 0.44 0.8346 0.5977 1.0789 0.6831 0.46 0.89 0.002 0.488

24 portfolios, sorted by market and HML betas
Intercept - - 1.558** 0.6859 0.0231 0.9654 0.1066 0.014 44 2.185*** 0 0.004 1
∆cndur 0.9222 no 0.522 0.1578 9e-04 0.2253 0.0206 0.272 0 0.999 0.999
∆cdur 0.021 no 0.112 0.1277 0.3823 0.1836 0.5434 0.456 0 0.996 0.998
MKT 0 no 0.338 0.6665 0.6122 1.1002 0.7587 0.842 -0.169 0 0.942

Note. The table presents the risk premia estimates and fit for different models of the cross-section of stocks. Panel A summarises results for the models that
rely on tradable risk factors, while Panel B demonstrated similar results for the models,relying on nontradable factors. First column describes the estimated
model, or refers to the paper where the original factor was first proposed. Column 2 presents the list of the risk factors used in the corresponding speicification.
Column 3 presents the p-value of the Wald test for the factor being a useless one, based on the first stage estimates of betas and heteroscedasticity and
autocorrelation-robust standard errors, based on the lag truncation rule suggested in Andrews (1991). Column 4 indicates whether a particular risk factor has
survived the sequential elimination procedure based on the misspecification-robust tm-statistic of Gospodinov et al. (2014a). Columns 5-11 present the results
of the model estimation based on the Fama-MacBeth procedure with an identity weight matrix (W = In), and include point estimates of the risk premia,
OLS and Shanken standard errors, the corresponding p-values, and the p-value based on 10,000 pairwise block stationary bootstrap of Politis and Romano
(1994). Column 11 presents the cross-sectional R2 of the model estimated by the Fama-MacBeth procedure. Columns 12-15 describe Pen-FM estimation
of the model, and summarise the point estimates of the risk premia, their shrinkage rate in the 10,000 bootstrap samples, the corresponding p-value of the
parameter, and the cross-sectional R2. Grey areas highlight the factors that are identified as useless/weak by the Pen-FM estimator (and, hence, experience
a substantial shrinkage rate)
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Table VIII. Mimicking portfolios of the nontradeable factor and the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

25 portfolios sorted by size and book-to-market
Intercept - - 2.604 1.0306 0.0115 1.2044 0.0306 0.01 27 3.5769 0 0.008 8
cay 0 no -2.46 0.5413 0 0.7895 0.0018 0.105 -0.382 0.9725 0.9735

Scaled CAPM MKT 0 no 1.249 1.0998 0.2563 1.4605 0.3926 0.765 0.232 0.0005 0.8125
cay× MKT 0 no -0.114 0.0959 0.2344 0.1211 0.3463 0.93 0 0.9955 0.9955

Scaled CCAPM Intercept - - 2.253 0.9141 0.0137 1.0663 0.0346 0.019 69 2.4462 0 0.023 68
cay 0 no -0.111 0.0731 0.128 0.0974 0.2538 0.321 -0.099 0.071 0.311
∆c 0 no 0.175 0.0567 0.002 0.0721 0.015 0.024 0.164 0.006 0.015
cay ×∆c 0 no -0.005 0.0049 0.3124 0.0061 0.4124 0.806 0 0.9805 0.9845

HC-CAPM Intercept - - 0.704 1.3241 0.595 1.6608 0.6716 0.759 93 4.7047 0 0.111 9
MKT 0 no 2.472 1.3211 0.0613 1.7963 0.1688 0.078 -0.774 0 0.811
∆y 0 no 0.641 0.1689 1e-04 0.2237 0.0042 0.001 0 0.812 0.812

Scaled HC-CAPM Intercept - - 5.184 0.9293 0 1.5628 9e-04 0.002 77 4.1585 0 0.003 1
cay 0 no -4.446 2.6289 0.0908 4.5212 0.3254 0.535 0 0.997 0.997
MKT 0 no -1.987 0.9226 0.0313 1.6995 0.2424 0.547 -0.298 0 0.945
∆y 0 no 0.557 0.254 0.0282 0.4331 0.1982 0.223 0 0.981 0.981
cay× MKT 0 no 0.341 0.1841 0.0643 0.3225 0.2908 0.457 0 0.9895 0.9915
cay ×∆y 0 no -0.167 0.0678 0.014 0.1153 0.1485 0.394 0 0.986 0.986

Durable Intercept - - 2.333 0.9333 0.0124 1.0883 0.0321 0.027 55 3.6587 0.0000 0 21
consumption ∆cndur 0 no 0.136 0.0525 0.0096 0.0643 0.0346 0.073 0 0.976 0.976
model ∆cdur 0 no -0.019 0.0284 0.5011 0.0381 0.6161 0.987 0 0.998 1

MKT 0 no -0.19 0.9624 0.8433 1.2608 0.88 0.71 -1.252 0 0.22

Note. The table presents the risk premia estimates and fit for different models of the cross-section of stocks using mimicking portfolios for the nontradable
factors. First column describes the estimated model, or refers to the paper where the original factor was first proposed. Column 2 presents the list of the risk
factors used in the corresponding specification. Column 3 presents the p-value of the Wald test for the factor being a useless one, based on the first stage
estimates of betas and heteroscedasticity and autocorrelation-robust standard errors, based on the lag truncation rule suggested in Andrews (1991). Column
4 indicates whether a particular risk factor has survived the sequential elimination procedure based on the misspecification-robust tm-statistic of Gospodinov
et al. (2014a). Columns 5-11 present the results of the model estimation based on the Fama-MacBeth procedure with an identity weight matrix (W = In),
and include point estimates of the risk premia, OLS and Shanken standard errors, the corresponding p-values, and the p-value based on 10,000 pairwise block
stationary bootstrap of Politis and Romano (1994). Column 11 presents the cross-sectional R2 of the model estimated by the Fama-MacBeth procedure.
Columns 12-15 describe Pen-FM estimation of the model, and summarise the point estimates of the risk premia, their shrinkage rate in the 10,000 bootstrap
samples, the corresponding p-value of the parameter, and the cross-sectional R2. Grey areas highlight the factors that are identified as useless/weak by the
Pen-FM estimator (and, hence, experience a substantial shrinkage rate)
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Figure 1 Distribution of the cross-sectional R2 in a correctly specified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the cross-sectional R-squared in a simulation of a correctly
specified model, potentially contaminated by the presence of an irrelevant factor for various sample sizes (T=30, 50, 100,
250, 500, 1000). For each of the sample sizes, the solid line represents the p.d.f. of the R-squared in the model without
a useless factor, when the risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line
depicts the distribution of the cross-sectional R-squared when the model is estimated by the Fama-MacBeth procedure,
and a useless factor is included, while the dash-dotted line stands for the R2 when the Pen-FM estimator is employed
in the same scenario of the contaminated model.

For a detailed description of the simulation design, please refer to Table I.
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Figure 2 Distribution of the cross-sectional GLS R2 in a correctly specified model based on the OLS
risk premia estimates in the second stage
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs demonstrate the probability density function for the cross-sectional GLS R2 in a simulation of a
correctly specified model, potentially contaminated by the presence of an irrelevant factor, and estimated using an
identity weight matrix on the second stage (W = In). For each of the sample sizes (T=30, 50, 100, 250, 500, 1000),
the solid line represents p.d.f. of the GLS R2 in the model without a useless factor, when risk premia are estimated by
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-sectional GLS R2 when
the model is estimated by Fama-MacBeth procedure, and a useless factor is included, while the dash-dotted line stands
for the GLS R2 when Pen-FM estimator is employed in the same scenario of the contaminated model.

For a detailed description of the simulation design, please refer to Table I.
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Figure 3 Distribution of the cross-sectional GLS R2 in a correctly specified model based on the GLS
risk premia estimates in the second stage
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(b) T=50
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the cross-sectional GLS R2 in a simulation of a correctly
specified model, potentially contaminated by the presence of an irrelevant factor, and estimated using the FGLS weight
matrix on the second stage (W = Ω̂−1). For each of the sample sizes (T=30, 50, 100, 250, 500, 1000), the solid line
represents the p.d.f. of the GLS R2 in the model without a useless factor, when risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-sectional GLS R2 when
the model is estimated by Fama-MacBeth procedure, and a useless factor is included, while the dash-dotted line stands
for the GLS R2 when the Pen-FM estimator is employed in the same scenario of the contaminated model.

For a detailed description of the simulation design, please refer to Table I.
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Figure 4 Distribution of the Hansen-Jagannathan distance in a correctly specified model
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(f) T=1000
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Note. The graphs present the probability density function for the Hansen-Jagannathan distance in the simulations
of a correctly specified model, potentially contaminated by the presence of an irrelevant factor, and the risk premia
estimated using an identity weight matrix on the second stage (W = In). For each of the sample sizes (T=30, 50, 100,
250, 500, 1000), the solid line represents the p.d.f. of HJ in the model without a useless factor, when the risk premia are
estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of HJ when the
model is estimated by the Fama-MacBeth procedure, and a useless factor is included, while the dash-dotted line stands
for HJ when the Pen-FM estimator is employed in the same scenario of the contaminated model.

For a detailed description of the simulation design, please refer to Table I.
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Figure 5 Distribution of the average pricing error in a correctly specified model
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the average pricing error (APE) in the simulations of a
correctly specified model, potentially contaminated by the presence of an irrelevant factor, and the risk premia estimated
using an identity weight matrix on the second stage (W = In). For each of the sample sizes (T=30, 50, 100, 250, 500,
1000), the solid line represents the p.d.f. of the APE in the model without a useless factor, when the risk premia are
estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of APE when the
model is estimated by Fama-MacBeth procedure, and a useless factor is included as well, while the dash-dotted line
stands for the APE when the Pen-FM estimator is employed in the same scenario of the contaminated model.

For a detailed description of the simulation design, please refer to Table I.
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Figure 6 Distribution of the cross-sectional R2 in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the cross-sectional R2 in a simulation of a misspecified
model with omitted variable bias and further potentially contaminated by the presence of an irrelevant factor for various
sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are produced using an identity weight matrix.
For each of the sample sizes, the solid line represents p.d.f. of the R2 statistic in the model without a useless factor,
when the risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the
distribution of the cross-sectional R2 when the model is estimated by the Fama-MacBeth procedure, including both the
useful and the useless factor, while the dash-dotted line stands for R2 when the Pen-FM estimator is employed in the
same scenario of the contaminated model.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure 7 Distribution of the GLS R2 in a misspecified model based on the OLS estimates of the risk
premia in the second stage
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs illustrate the probability density function for the cross-sectional GLS R2 in a simulation of a
misspecified model with omitted variable bias and further potentially contaminated by the presence of an irrelevant
factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are produced using an
identity weight matrix. For each of the sample sizes, the solid line represents the p.d.f. of the GLS R2 statistic in
the model without a useless factor, when the risk premia are estimated by the Fama-MacBeth estimator (the oracle
case), the dashed line depicts the distribution of the cross-sectional GLS R2 when the model is estimated by the
Fama-MacBeth procedure, including both the useful and the useless factor, while the dash-dotted line stands for R2

when the Pen-FM estimator is employed in the same scenario of the contaminated model.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure 8 Distribution of the cross-sectionalGLS R2 in a misspecified model with risk premia estimates
based on the GLS second stage
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Note. The graphs present the probability density function for the cross-sectional GLS R2 in a simulation of a
misspecified model with omitted variable bias and further potentially contaminated by the presence of an irrelevant
factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are produced using the
FGLS weight matrix (W = Ω̂−1). For each of the sample sizes, the solid line represents the p.d.f. of the GLS R2

statistic in the model without a useless factor, when the risk premia are estimated by the Fama-MacBeth estimator (the
oracle case), the dashed line depicts the distribution of the cross-sectional GLS R2 when the model is estimated by the
Fama-MacBeth procedure, including both the useful and the useless factor, while the dash-dotted line corresponds to
the case of the Pen-FM estimator employed in the same scenario of the contaminated model.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure 9 Distribution of the Hansen-Jagannathan distance in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the Hansen-Jagannathan distance (HJ) in a simulation of
a misspecified model with omitted variable bias and further potentially contaminated by the presence of an irrelevant
factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are produced using an
identity weight matrix. For each of the sample sizes, the solid line represents the p.d.f. of HJ in the model without a
useless factor, when risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts
the distribution of HJ when the model is estimated by the Fama-MacBeth procedure, including both the useful and
the useless factor, while the dash-dotted line corresponds to the case of the Pen-FM estimator employed in the same
scenario of the contaminated model.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure 10 Distribution of the average pricing error in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

Average Pricing Error

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Fama−MacBeth (oracle)

Fama−MacBeth

Pen−FM

(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the average pricing error (APE) in a simulation of a
misspecified model with omitted variable bias and further potentially contaminated by the presence of an irrelevant
factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are produced using an
identity weight matrix. For each of the sample sizes, the solid line represents the p.d.f. of APE in the model without
a useless factor, when risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line
depicts the distribution of the APE when the model is estimated by the Fama-MacBeth procedure, including both the
useful and the useless factor, while the dash-dotted line corresponds to the case of the Pen-FM estimator employed in
the same scenario of the contaminated model.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Appendix A.

Table A1. Empirical size of the bootstrap-based confidence bounds in a correctly specified
model

λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-MacBeth estimator in a model with only a useful factor

30 0.065 0.029 0.003 0.033 0.009 0.000 - - -
50 0.075 0.037 0.009 0.047 0.016 0.001 - - -
100 0.096 0.055 0.015 0.062 0.026 0.005 - - -
250 0.103 0.049 0.009 0.054 0.023 0.003 - - -
500 0.106 0.057 0.008 0.059 0.027 0.003 - - -
1000 0.101 0.043 0.008 0.048 0.018 0.002 - - -

Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor

25 0.045 0.023 0.003 0.024 0.006 0.001 0.008 0.001 0
50 0.061 0.032 0.002 0.029 0.011 0.002 0.007 0.002 0
100 0.068 0.029 0.004 0.033 0.009 0.000 0.009 0.002 0
250 0.069 0.027 0.003 0.034 0.011 0.001 0.006 0.002 0
500 0.071 0.036 0.008 0.043 0.018 0.001 0.005 0.003 0.001
1000 0.063 0.028 0.007 0.037 0.012 0.006 0.005 0 0

Panel C: Pen-FM estimator in a model with a useful and a useless factor

25 0.051 0.027 0.006 0.027 0.007 0.001 0.002 0 0
50 0.081 0.038 0.005 0.036 0.016 0.002 0 0 0
100 0.09 0.041 0.005 0.047 0.014 0.001 0 0 0
250 0.093 0.05 0.008 0.048 0.025 0.001 0 0 0
500 0.095 0.054 0.013 0.055 0.026 0.004 0 0 0
1000 0.097 0.042 0.01 0.061 0.021 0.007 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the Fama-MacBeth and
Pen-FM estimators with the identity weight matrix in the second stage and at various significance levels (α=10%,
5%, 1%). The model includes a true risk factor and a useless one. λ0 stands for the value of the intercept, λ1 and
λ2 are the corresponding risk premia of the factors. Panel A corresponds to the case of the Fama-MacBeth estimator
with an identity weight matrix, when the model includes only the useful factor. Panels B and C present the empirical
size of the confidence bounds of the risk premia when the model includes both a useful and a useless factor, and the
parameters are estimated by Fama-MacBeth or Pen-FM estimator accordingly. The model is simulated 10,000 times
for different values of the sample size (T). The confidence bounds are constructed from 10,000 pairwise bootstrap replicas.

For a detailed description of the simulation design, please refer to Table I.
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Table A2. Empirical size of the confidence bounds, based on the t-statistic in a correctly
specified model

Intercept, λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor,
without Shanken correction

25 0.1265 0.073 0.0345 0.127 0.07 0.0325 - - -
50 0.114 0.064 0.025 0.1155 0.057 0.0255 - - -
100 0.1115 0.058 0.0275 0.105 0.055 0.0285 - - -
250 0.107 0.051 0.019 0.1065 0.0575 0.0175 - - -
500 0.096 0.0465 0.0195 0.1025 0.052 0.021 - - -
1000 0.09 0.047 0.018 0.095 0.043 0.0175 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.095 0.0435 0.011 0.035 0.0085 0.001 - - -
50 0.092 0.04 0.014 0.04 0.0115 0.003 - - -
100 0.097 0.0445 0.0185 0.051 0.02 0.003 - - -
250 0.1 0.0445 0.0145 0.0585 0.016 0.003 - - -
500 0.0925 0.045 0.0175 0.056 0.023 0.0055 - - -
1000 0.089 0.046 0.017 0.0495 0.019 0.007 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

30 0.1325 0.076 0.035 0.1305 0.0725 0.037 0.123 0.0695 0.034
50 0.117 0.0625 0.0255 0.1225 0.062 0.028 0.1115 0.0595 0.029
100 0.1115 0.0565 0.0245 0.1065 0.053 0.025 0.106 0.0505 0.0205
250 0.101 0.05 0.0195 0.099 0.051 0.02 0.11 0.049 0.0195
500 0.1075 0.0495 0.021 0.111 0.0515 0.0225 0.0935 0.048 0.023
1000 0.089 0.0485 0.0145 0.09 0.0485 0.0175 0.113 0.058 0.021

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

30 0.0875 0.0355 0.011 0.031 0.0055 0.001 0.0285 0.0055 0
50 0.074 0.0365 0.0085 0.033 0.007 0.002 0.033 0.0085 0.0015
100 0.0765 0.033 0.0125 0.037 0.015 0.0035 0.024 0.0065 0.0005
250 0.0755 0.0305 0.0085 0.0435 0.0145 0.0025 0.034 0.005 0
500 0.0835 0.0345 0.01 0.0445 0.0165 0.0025 0.0305 0.0075 0.0005
1000 0.0675 0.0335 0.0095 0.041 0.013 0.005 0.0365 0.0075 0

Note. The table presents the empirical size of the t-statistic-based confidence bounds for the Fama-MacBeth estimator
with an identity weight matrix in a model with a common intercept for 25 portfolios and a single risk factor, with or
without a useless one. λ0 is the value of the intercept; λ1 and λ2 are the corresponding risk premia of the factors.
The model is simulated 10,000 times for different values of the sample size (T). Panels A and C present the size of the
t-statistic, computed using OLS-based heteroscedasticity-robust standard errors. Panels B and D present results based
on Shanken correction.

For a detailed description of the simulation design, please refer to Table I.
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Table A3. Empirical size of the bootstrap-based confidence bounds for true values in a
misspecified model

λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-MacBeth estimator in a model with only a useful factor

25 0.004 0 0 0.003 0 0 - - -
50 0.005 0 0 0.003 0.001 0 - - -
100 0.004 0.001 0 0.005 0.002 0 - - -
250 0.001 0 0 0.009 0.001 0 - - -
500 0 0 0 0.05 0.005 0 - - -
1000 0.002 0.001 0 0.183 0.049 0.005 - - -

Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor

25 0.01 0.003 0 0.002 0.001 0 0.002 0 0
50 0.005 0 0 0.002 0 0 0.011 0.002 0
100 0.003 0.001 0 0.002 0.001 0 0.055 0.02 0.001
250 0.004 0.002 0 0.005 0.001 0 0.093 0.052 0.014
500 0.002 0 0 0.01 0.001 0 0.088 0.05 0.01
1000 0.003 0.001 0 0.019 0.005 0 0.122 0.066 0.019

Panel C: Pen-FM estimator in a model with a useful and a useless factor

25 0.007 0.001 0 0.004 0.001 0 0 0 0
50 0.002 0 0 0.002 0 0 0 0 0
100 0.003 0 0 0.003 0 0 0 0 0
250 0.002 0.001 0 0.009 0 0 0 0 0
500 0.004 0.001 0 0.055 0.012 0 0 0 0
1000 0.002 0 0 0.161 0.046 0.002 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the Fama-MacBeth and
Pen-FM estimators with an identity weight matrix in the second stage and at various significance levels (α=10%, 5%,
1%). The misspecified model includes only 1 out of 3 true risk factors, and is further contaminated by the presence of a
useless one. λ0 stands for the value of the intercept; λ1 and λ2 are the corresponding risk premia of the factors. Panel
A corresponds to the case of the Fama-MacBeth estimator with an identity weight matrix, when the model includes
only one useful factor. Panels B and C present empirical size of the confidence bounds of the risk premia when the
model includes both a useful and a useless factor, and their parameters are estimated by the Fama-MacBeth or Pen-FM
procedures accordingly. The model is simulated 10 000 times for different values of the sample size (T). The confidence
bounds are constructed from 10 000 pairwise bootstrap replicas.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Table A4. Empirical size of the confidence bounds for the true values of the risk premia,
based on the t-statistic in a mispecified model

Intercept, λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Fama-MacBeth estimator in a model with only a useful factor,
without Shanken correction

30 0.0145 0.004 0.001 0.02 0.006 0.002 - - -
50 0.01 0.003 0.0015 0.015 0.004 0.001 - - -
100 0.0035 0 0 0.015 0.002 0 - - -
250 0.0025 0.001 0 0.0555 0.014 0.002 - - -
500 0.004 0.0015 0 0.1535 0.051 0.009 - - -
1000 0.0035 0 0 0.408 0.206 0.0785 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.011 0.0015 5e-04 0.002 0 0 - - -
50 0.0065 0.002 0.001 0.003 0.001 0 - - -
100 0.0015 0 0 0.001 0 0 - - -
250 0.0025 0.001 0 0.014 0.0015 0 - - -
500 0.004 0.0015 0 0.0585 0.0115 0.002 - - -
1000 0.003 0 0 0.238 0.086 0.0115 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

25 0.0355 0.015 0.002 0.0435 0.016 0.003 0.135 0.055 0.016
50 0.0435 0.0175 0.0055 0.0555 0.022 0.007 0.2885 0.139 0.0465
100 0.0745 0.0375 0.015 0.0935 0.0465 0.02 0.5945 0.441 0.2375
250 0.178 0.1115 0.0605 0.2325 0.154 0.084 0.805 0.7595 0.696
500 0.301 0.229 0.162 0.3845 0.2935 0.202 0.872 0.8425 0.806
1000 0.4095 0.347 0.2815 0.5355 0.451 0.3625 0.932 0.915 0.8885

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

25 0.018 0.004 0.0015 0.003 0.001 0 0.0185 0.003 0.001
50 0.0165 0.005 0.0015 0.007 0.001 0 0.054 0.0065 5e-04
100 0.0185 0.0065 0.0015 0.0155 0.003 0.0005 0.249 0.044 0.002
250 0.0305 0.008 0.0015 0.0375 0.011 0.0015 0.672 0.3305 0.051
500 0.0445 0.018 0.006 0.0725 0.027 0.0095 0.8105 0.5845 0.2095
1000 0.056 0.0235 0.011 0.124 0.0595 0.025 0.8895 0.731 0.3965

Note. The table presents the empirical size of the t-statistic-based confidence bounds for the true risk premia values for
the Fama-MacBeth estimator with the identity weight matrix in a model with a common intercept for 25 portfolios and
a single risk factor, with or without a useless one. λ0 is the value of the intercept, λ1 and λ2 are the corresponding risk
premia of the factors. The model is simulated 10,000 times for different values of the sample size (T). Panels A and C
present the size of the t-statistic computed using heteroscedasticity-robust standard errors. Panels B and D present the
results based on Shanken correction.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Table A5. Empirical size of the bootstrap-based confidence bounds for the pseudo-true
values in a misspecified model

λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor

25 0.004 0 0 0 0 0 - - -
50 0.005 0 0 0 0 0 - - -
100 0.004 0.001 0 0.001 0 0 - - -
250 0 0 0 0 0 0 - - -
500 0 0 0 0 0 0 - - -
1000 0.001 0 0 0 0 0

Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor

25 0.01 0.003 0 0.001 0 0 0.002 0 0
50 0.001 0 0 0 0 0 0.011 0.002 0
100 0.003 0.001 0 0 0 0 0.055 0.02 0.001
250 0.004 0 0 0.001 0 0 0.093 0.052 0.014
500 0.002 0 0 0.001 0 0 0.088 0.05 0.01
1000 0.004 0.001 0 0.003 0 0 0.122 0.066 0.019

Panel C: Pen-FM estimator in a model with a useful and a useless factor

25 0.007 0.001 0 0.001 0 0 0 0 0
50 0.002 0 0 0 0 0 0 0 0
100 0.003 0 0 0 0 0 0 0 0
250 0.002 0.001 0 0.001 0 0 0 0 0
500 0.003 0.001 0 0 0 0 0 0 0
1000 0.002 0 0 0 0 0 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the Fama-MacBeth and
Pen-FM estimators with an identity weight matrix at the second stage and various significance levels (α=10%, 5%,
1%). The misspecified model includes only 1 out of 3 true risk factors, and is further contaminated by the presence
of a useless one. λ0 stands for the value of the intercept; λ1 and λ2 are the corresponding risk premia of the factors.
The pseudo-true values of the risk premia are defined as the limit of the risk premia estimates in a misspecified model
without the influence of the useless factor. Panel A corresponds to the case of the Fama-MacBeth estimator with
an identity weight matrix, when the model includes only one useful factor. Panels B and C present the empirical
size of the confidence bounds of risk premia when the model includes both a useful and a useless factor, and their
parameters are estimated by the Fama-MacBeth or Pen-FM procedures accordingly. The model is simulated 10 000 times
for different values of the sample size (T). The confidence bounds are constructed from 10 000 pairwise bootstrap replicas.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Table A6. Empirical size of the confidence bounds for the pseudo-true values of risk
premia, based on the t-statistic in a mispecified model

Intercept, λ0 Useful factor, λ1 6= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor,
without Shanken correction

30 0.015 0.004 0.001 0.0085 0.002 0 - - -
50 0.0085 0.003 0.0015 0.007 0.002 0.0005 - - -
100 0.003 0 0 0.0015 0 0 - - -
250 0.0025 0.001 0 0.002 0 0 - - -
500 0.0045 0.0015 0 0.0035 5e-04 0 - - -
1000 0.003 0 0 0.0005 0 0 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.01 0.0015 0.0005 0 0 0 - - -
50 0.0055 0.0015 0.001 0.0015 0 0 - - -
100 0.0015 0 0 0 0 0 - - -
250 0.002 0.001 0 0 0 0 - - -
500 0.004 0.0015 0 0.001 0 0 - - -
1000 0.002 0 0 0 0 0 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

30 0.0345 0.015 0.002 0.0225 0.0055 0.0015 0.135 0.055 0.016
50 0.04 0.017 0.0045 0.0315 0.01 0.004 0.2885 0.139 0.0465
100 0.0715 0.036 0.0145 0.06 0.027 0.01 0.5945 0.441 0.2375
250 0.18 0.11 0.0595 0.168 0.1015 0.0515 0.805 0.7595 0.696
500 0.305 0.2245 0.1605 0.297 0.2275 0.158 0.872 0.8425 0.806
1000 0.405 0.342 0.283 0.4145 0.347 0.28 0.932 0.915 0.8885

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

30 0.0175 0.0035 0.0005 0.001 0 0 0.0185 0.003 0.001
50 0.015 0.0055 0.0015 0.005 0.001 0 0.054 0.0065 0.0005
100 0.0175 0.0065 0.001 0.0055 0.001 0 0.249 0.044 0.002
250 0.028 0.0065 0.0015 0.011 0.002 0 0.672 0.3305 0.051
500 0.0445 0.018 0.006 0.0305 0.007 0.0015 0.8105 0.5845 0.2095
1000 0.055 0.022 0.009 0.0445 0.0155 0.0015 0.8895 0.731 0.3965

Note. The table summarises the empirical size of the t-statistic-based confidence bounds for the Fama-MacBeth and
Pen-FM estimators with an identity weight matrix at the second stage and at various significance levels (α=10%, 5%,
1%). The misspecified model includes only 1 out of 3 true risk factors, and is further contaminated by the presence of
a useless factor. λ0 stands for the value of the common intercept; λ1 and λ2 are the corresponding risk premia of the
factors. The pseudo-true values of the risk premia are defined as the limit of the risk premia estimates in a misspecified
model without the influence of the useless factor. Panels A and C present the size of the t-statistic confidence bounds,
computed using OLS-based heteroscedasticity-robust standard errors that do not take into account the error-in-variables
problem of the second stage. The model is estimated with/without the useless factor. Panels B and D present similar
results for the case of Shanken correction. The model is simulated 10,000 times for different values of the sample size (T).

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure A1 Distribution of the T 2 statistic in a correctly specified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the T 2 statistic in the simulations of a correctly specified
model, potentially contaminated by the presence of an irrelevant factor, and the risk premia estimated using an identity
weight matrix in the second stage (W = In). For each of the sample sizes (T=30, 50, 100, 250, 500, 1000), the solid
line represents the p.d.f. of the T 2 in the model without a useless factor, when risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of T 2 when the model is estimated
by the Fama-MacBeth procedure in the presence of a useless factor.

For a detailed description of the simulation design, please refer to Table I.
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Figure A2 Distribution of q-statistic in a correctly specified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function of the q-statistic in the simulations of a correctly specified
model, potentially contaminated by the presence of an irrelevant factor, and the risk premia estimated using an identity
weight matrix in the second stage (W = In). For each of the sample sizes (T=30, 50, 100, 250, 500, 1000), the solid line
represents the p.d.f. of q in the model without a useless factor, when risk premia are estimated by the Fama-MacBeth
estimator (the oracle case), and the dashed line depicts the distribution of q when the model is estimated by the
Fama-MacBeth procedure under the presence of a useless factor.

For a detailed description of the simulation design, please refer to Table I.
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Figure A3 Distribution of the T 2-statistic in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

T−squared

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Fama−MacBeth (oracle)

Fama−MacBeth

(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for the T 2-statistic in a simulation of a misspecified model,
potentially contaminated by the presence of an irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500,
1000). The second stage estimates are produced using an identity weight matrix. For each of the sample sizes,
the solid line represents p.d.f. of T 2 in the model without a useless factor, when risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of T 2 when the model is estimated
by the Fama-MacBeth procedure, including both the useful and the useless factor.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Figure A4 Distribution of the q-statistic in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000
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Note. The graphs present the probability density function for q-statistic in a simulation of a misspecified model,
potentially contaminated by the presence of an irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500,
1000). The second stage estimates are produced using an identity weight matrix. For each of the sample sizes, the
solid line represents the p.d.f. of q in the model without a useless factor, when risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of q when the model is estimated
by the Fama-MacBeth procedure, including both the useful and the useless factor.

For a detailed description of the simulation design for the misspecified model, please refer to Table II.
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Appendix B

B.1. Proof of Proposition 1

Proof. Consider the quadratics in the objective function.[
R̄− β̂λ

]′
WT

[
R̄− β̂λ

]
p→ [E [R]− βnsλns]′W [E [R]− βnsλns]

For the strong factors that have substantial covariance with asset returns (whether their risk is priced or not),

ηT
1

‖β̂j‖d
1

a∼ ηT−d/2Op(1)
d→ 0, where

a∼ denotes equivalence of the asymptotic expansion up to op

(
1√
T

)
. For

the useless factors we have ηT
1

‖β̂j‖d
1

a∼ ηT−d/2cjT
d/2 d→ c̃j > 0. Therefore, in the limit the objective function

becomes the following convex function of λ:

[E [R]− βnsλns]′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1{βj = 0}

Since cj are some positive constants,

0 = arg min
λsp∈Θsp

[E [R]− βnsλns]′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1{βj = 0}

The risk premia for the strong factors are still identified, as

λ0,ns = arg min
λns∈Θns

[E [R]− βnsλns]′W [E [R]− βnsλns] = (β′nsWβns)
−1
β′nsWE [R] = (β′nsWβns)

−1
β′nsWβnsλ0,ns

By the convexity lemma of Pollard (1991), the estimator is consistent.
To establish asymptotic normality, it is first instructive to show the distribution of the usual Fama-McBeth

estimator in the absence of identification failure.
Following Lemma 1, the first stage estimates have the following asymptotic representations

β̂ns = βns +
1√
T

Ψβ,ns + op

(
1√
T

)
, R̄ = βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR + op

(
1√
T

)
where Ψβ,ns = vecinv(ψβ,ns) and vecinv is the inverse of the vectorisation operator.

Consider the WLS estimator of the cross-section regression:

λ̂ns =
(
β̂′nsWT β̂ns

)−1

β̂′nsWT R̄
a
=
(
β̂′nsWT β̂ns

)−1

β̂′ns

(
βnsλ0,ns +

1√
T
ψR

)
=
(
β̂′nsWT β̂ns

)−1

β̂′nsWT

(
β̂nsλ0,ns + (βns − β̂ns)λ0,ns +

1√
T
ψR

)
=

= λ0,ns +
(
β̂′nsWT β̂ns

)−1

β̂′nsWT (β̂ns − βns)λ0,ns +
(
β̂′nsWT β̂ns

)−1

β̂′nsWT
1√
T
ψR

Finally, since as T →∞

β̂′nsWT β̂ns
a
=

[
βns +

1√
T

Ψβ,ns

]′
WT

[
βns +

1√
T

Ψβ,ns

]
p→ β′nsWβns

β̂ns − βns
a
= − 1√

T
Ψβ,ns =

1√
T

Ψβ,ns
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it follows that √
T (λ̂ns − λ0,ns)

d→ [β′nsWβns]
−1
β′nsWΨβ,nsλ0,ns + (β′1Wβ1)

−1
β′nsWψR

In order to demonstrate the asymptotic distribution of the shrinkage-based estimator, I reformulate the
objective function in terms of the centred parameters u = λ−λ0√

T
:

LT (u) =

[
R̄− β̂

(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
+ ηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

∣∣∣∣λ0j +
u√
T

∣∣∣∣
Solving the original problem in 9 w.r.t. λ is the same as optimizing L̄(u) = T (LT (u)− LT (0)) w.r.t. u.
Since [

R̄− β̂
(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
=

= R̄′WT R̄+

[
λ0 +

u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
− 2

[
λ0 +

u√
T

]′
β̂′WT R̄

λ′0β̂
′WT β̂λ0 +

u′√
T
β̂′WT β̂

u√
T

+
2√
T
u′β̂′WT β̂λ0 − 2

[
λ0 +

u√
T

]′
β̂′WT R̄

= λ′0β̂
′WT β̂λ0 +

u′√
T
β̂′WT β̂

u√
T
− 2λ′0β̂

′WT R̄+
2√
T
u′β̂′WT (β̂λ0 − R̄)

Therefore, in localized parameters u the problem looks as follows:

û = arg min
u∈K

u′β̂′WT β̂u+ 2
√
Tu′β̂′WT (β̂λ0 − R̄) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]

= arg min
u∈K

u′β̂′WT β̂u+ 2
√
T β̂′WT (β̂ − β)λ0 − 2u′β̂′WTϕR+

+TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]

where K is a compact set in Rk.
It is easy to show that since as t→∞

β̂′WT β̂
a
=

[
β′ns + 1√

T
Ψ′β,ns

1√
T

Ψ′β,sp

]
WT

[
βns + 1√

T
Ψβ,ns

1√
T

Ψβ,sp

]
a
=

[
β′nsWβns 0

0 0

]
the following identities hold:

u′β̂′WT β̂u
a
=
[
u′ns u′sp

] [β′nsWβns 0
0 0

] [
uns
usp

]
= u′ns [β′nsWβns]uns ,

u′β̂′WT (β̂ − β)λ0
a
=
[
u′ns u′sp

] [β′ns + 1√
T

Ψ′β,ns
1√
T

Ψ′β,sp

]
W
[

1√
T

Ψβ,ns
1√
T

Ψβ,sp

] [λ0,ns

0

]
a
=

=
[
u′ns u′sp

] [ 1√
T
β′nsWΨβ,ns

1√
T
β′nsWΨβ,sp

0 0

] [
λ0,ns

0

]
=

1√
T
u′nsβ

′
nsWΨβ,nsλ0,ns ,

u′β̂′WTϕR
a
=
[
u′ns u′sp

] [β′ns + 1√
T

Ψ′β,ns
1√
T

Ψ′β,sp

]
WϕR .

84



Finally, this implies that the overall objective function asymptotically looks as follows:

L̄T (u)
a
= u′ns [β′nsWβns]uns + 2u′nsβ

′
nsWΨβ,nsλ0,ns − 2u′ns(βns +

1√
T

Ψβ,ns)
′WϕR

− 2√
T
u′spΨ

′
β,spWϕR + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]
a
=

= u′nsβ
′
nsWβnsuns − 2u′nsβ

′
nsW (ϕR −Ψβ,nsλ0,ns) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]

Now, for a spurious factor: TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uj√
T

∣∣∣− |λ0j |
]

=
√
TηT−d/2cjT

d/2 |uj | =
√
T c̃j |uj |,

while for the strong ones: TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uj√
T

∣∣∣− |λ0j |
]

= cj
√
TT−d/2ujsgn(λ0j)→ 0, since d > 2.

Therefore, as T →∞, L̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
−u′nsβ

′

nsWβnsuns − 2u
′

nsWβns (φR −Ψβ,nsλ0,ns) if usp = 0
∞ otherwise

Note that L̄T (u) is a convex function with a unique optimum given by(
[β′nsWβns]

−1
β′nsWΨβ,nsλ0,ns + [β′nsWβns]

−1
β′nsWψR, 0

)′
.

Therefore, due to the epiconvergence results of Pollard (1994) and Knight and Fu (2000), we have that

ûns
d→ [β′nsWβns]

−1
β′nsWΨβ,nsλ0,ns + [β′nsWβns]

−1
β′nsWψR ,

ûsp
d→ 0 .

Hence, the distribution of the risk premia estimates for the useful factors coincides with the one without
the identification problem. Therefore, Pen-FM exhibits the so-called oracle property.

B.2. Proof of Proposition 2

Proof. I am going to prove consistency first. Consider the objective function. As T →∞[
R̄− β̂λ

]′
WT

[
R̄− β̂λ

]
p→ [E [R]− βnsλns]′W [E [R]− βnsλns]

Also note that for the strong factors ηT
1

‖β̂j‖d
1

∼ ηT−d/2Op(1) → 0, while for the weak ones ηT
1

‖β̂j‖d
1

∼

ηT−d/2cjT
d/2 → c̃j > 0.

Therefore, the limit objective function becomes

[E [R]− βnsλns]′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1
{
βj = Op

(
1√
T

)}
Since c̃j are positive constants,

0 = arg min
λsp∈Θsp

[E [R]− βnsλns]′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1
{
βj = Op

(
1√
T

)}
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However, the risk premia for the strong factors are still strongly identified, since

arg min
λj∈Θns

[E [R]− βnsλns]′W [E [R]− βnsλns] = λ0,ns +
1√
T

(β′nsWβns)
−1
β′nsWBspλ0,sp → λ0,ns

Therefore, once again, due to the convexity lemma of Pollard (1991), the estimator is consistent.
Again, I first demonstrate the asymptotic distribution in the usual Fama-McBeth estimator in the absence

of weak factors. Recall that

β̂ns = βns +
1√
T

Ψβ,ns + op

(
1√
T

)
, R̄ = βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR + op

(
1√
T

)
where Ψβ,ns = vecinv(ψβ,ns).

Therefore, the second stage estimates have the following asymptotic expansion

λ̂ns =
(
β̂′nsWT β̂ns

)−1

β̂′nsWT R̄
a
=
(
β̂′nsWT β̂ns

)−1

β̂′ns

(
βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR

)
=

=
(
β̂′nsWT β̂ns

)−1

β̂′nsWT

(
β̂nsλ0,ns + (βns − β̂ns)λ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR

)
=

= λ0,ns +
(
β̂′nsWT β̂ns

)−1

β̂′nsWT (β̂ns − βns)λ0,ns +
(
β̂′nsWT β̂ns

)−1

β̂′nsWT
Bsp√
T
λ0,sp

+
(
β̂′nsWT β̂ns

)−1

β̂′nsWT
1√
T
ψR

Finally, since

β̂′nsWT β̂ns
a
=

[
βns +

1√
T

Ψβ,ns

]′
WT

[
βns +

1√
T

Ψβ,ns

]
p→ β′nsWβns

β̂ns − βns
a
= − 1√

T
Ψβ,ns =

1√
T

Ψβ,ns

we get √
T (λ̂ns − λ0,ns)

d→

[β′nsWβns]
−1
β′nsWΨβ,nsλ0,ns + (β′1Wβ1)

−1
β′nsWψR +

(
β̂′nsWT β̂ns

)−1

β̂′nsWTBspλ0,sp

The asymptotic distribution of risk premia estimates has three components:

• [β′nsWβns]
−1
β′nsWΨβ,nsλ0,ns, which arises due to the error-in-variables problem, since we observe not

the true values of betas, but only their estimates, i.e. the origin for Shanken (1992) correction;

• (β′1Wβ1)
−1
β′nsWψR, which corresponds to the usual sampling error, associated with the WLS estimator;

•
(
β̂′nsWT β̂ns

)−1

β̂′nsWTBspλ0,sp, which is the 1√
T

omitted variable bias, due to eliminating potentially

priced weak factors from the model.

Similar to the previous case, in order show the asymptotic distribution of the Pen-FM estimator, I rewrite
the objective function in terms of the localised parameters, u = λ−λ0√

T
, as follows:

û = arg min
u∈K

u′β̂′WT β̂u+ 2
√
Tu′β̂′WT (β̂λ0 − R̄) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]
,
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since [
R̄− β̂

(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
=

= R̄′WT R̄+

[
λ0 +

u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
− 2

[
λ0 +

u√
T

]′
β̂′WT R̄ ,[

λ0 +
u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
= λ′0β̂

′WT β̂λ0 +
u′√
T
β̂′WT β̂

u√
T

+
2√
T
u′β̂′WT β̂λ0

−2

[
λ0 +

u√
T

]′
β̂′WT R̄ = −2λ′0β̂

′WT R̄−
2√
T
u′β̂′WT R̄ .

Recall that

β̂′WT β̂
a
=

[
β′ns + 1√

T
Ψ′β,ns

1√
T

(B′sp + Ψ′β,sp)

]
WT

[
βns + 1√

T
Ψβ,ns

Bsp√
T

+ 1√
T

Ψβ,sp

]
a
=

=

[
β′nsWβns + 2√

T
Ψ′β,nsWβns

1√
T
β′nsW (Bsp + Ψβ,sp)

1√
T

(Bsp + Ψβ,sp)Wβns 0

]
.

Hence,

u′β̂′WT β̂u
a
=
[
u′ns u′sp

] [β′nsWβns + 2√
T

Ψ′β1Wβns
1√
T
β′nsW (Bsp + Ψβ,sp)

1√
T

(Bsp + Ψβ,ns)
′Wβns 0

] [
uns
usp

]
=

= u′ns

[
β′nsWβns +

2√
T

Ψ′β,nsWβns

]
uns + u′sp

[
1√
T

(Bsp + Ψβ,sp)
′Wβns

]
uns + u′ns

[
1√
T
β′nsW (Bsp + Ψβ,sp)

]
usp

u′β̂′WT β̂λ0 − u′β̂′WT R̄ = u′β̂′WT

[
β̂nsλ0,ns − βnsλ0,ns −

Bsp√
T
λ0,sp −

1√
T
ϕR

]
a
=

=
[
u′ns u′sp

] [ β′ns + 1√
T

Ψ′β,ns
1√
T

(B′sp + Ψ′β,sp)

]
WT

[
1√
T

Ψβ,nsλ0,ns −
Bsp√
T
λ0,sp −

1√
T
ϕR

]
a
=

=
[
u′ns u′sp

] [ 1√
T
β′nsWΨβ,nsλ0,ns − 1√

T
β′nsWBspλ0,sp − 1√

T
β′nsWϕR

0

]
Finally, this implies that the overall objective function asymptotically looks as follows:

L̄T (u)
a
= u′ns

[
β′nsWβns +

2√
T

Ψ′β,nsWβns

]
uns + u′sp

[
1√
T

(Bsp + Ψβ,sp)
′Wβns

]
uns

+u′ns

[
1√
T
β′nsW (Bsp + Ψβ,sp)

]
usp + 2u′ns

[
β′nsWΨβ,nsλ0,ns − β′nsWBspλ0,sp − β′nsWϕR

]
+TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]
a
=

= u′nsβ
′
nsWβnsuns + 2u′ns

[
β′nsWΨβ,nsλ0,ns − β′nsWBspλ0,sp − β′nsWϕR

]
+ TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j +
uj√
T

∣∣∣∣− |λ0j |
]

Now, for a spurious factor TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uj√
T

∣∣∣− |λ0j |
]

=
√
TηT−d/2c2T

d/2 |uj | =
√
T c̃ |uj | while for the
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strong ones TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uj√
T

∣∣∣− |λ0j |
]

= c2
√
TT−d/2ujsgn(λ0j)→ 0, since d > 2.

Hence, as T →∞, L̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
−u′nsβ

′

nsWβnsuns − 2u
′

nsWβns(φR +Bspλ0,ns −Ψβ,nsλ0,ns) if usp = 0
∞ otherwise

Note that L̄T (u) is a convex function with the unique optimum given by(
[β′nsWβns]

−1
β′nsW [Ψβ,nsλ0,ns +Bspλ0,sp] + [β′nsWβns]

−1
β′nsWψR, 0

)′
.

Therefore, due to the epiconvergence results of Pollard (1994) and Knight and Fu (2000),

ûns
d→ [β′nsWβns]

−1
β′nsWBspλ0,sp + [β′nsWβns]

−1
β′nsW (ψR + Ψβ,nsλ0,ns) ,

ûsp
d→ 0 .

B.3. Proof of Proposition 3

Proof. Consider the bootstrap counterpart of the second stage regression.

λ̂∗ = arg min
λ∈Θ

(R̄∗ − β̂∗λ)′W ∗T (R̄∗ − β̂∗λ) + µT

k∑
j=1

1

||β̂∗j ||d
[|λj |]

Similar to Proposition 1, in terms of localised parameters, λ = λ̂pen + u√
T

, the centred problem becomes

û∗ = arg min
u∈K

(λ̂pen + u√
T

)′β̂∗
′
W ∗T β̂

∗(λ̂pen + u√
T

)− 2(λ̂pen + u√
T

)′β̂∗
′
W ∗T R̄

∗ +

+µT
∑k
j=1

1
||β̂∗j ||d

[|λ̂j,pen + u√
T
| − |λ̂j,pen|]

where K is a compact set on Rk+1. Note that the problem is equivalent to the following one

û∗ = arg min
u∈K

u′β̂∗
′
W ∗T β̂

∗u+ 2
√
Tu′β̂∗

′
W ∗T β̂

∗λ̂pen − 2
√
Tu′β̂∗′W

∗
T R̄
∗ +

+µT
∑k
j=1

1
||β̂∗j ||d

[|λ̂j,pen + u√
T
| − |λ̂j,pen|] .

If βsp = 0

[
u′′ns u′sp

] β̂′ns +
Ψβ,ns√

T

′

β̂′sp +
Ψβ,sp√
T

′

W ∗T [β̂ns +
Ψβ,ns√

T
β̂sp +

Ψβ,ns√
T

] [uns
usp

]
a
= u′nsβ

′
nsWβnsuns

2
√
Tu′β̂∗

′
W ∗T β̂

∗λ̂pen − 2
√
Tu′β̂∗

′
W ∗T R̄

∗ = 2u′

β̂′ns +
Ψβ,ns√

T

′

β̂′sp +
Ψβ,sp√
T

′

W ∗T√T [β̂∗λ̂pen − β̂∗R̄∗]

88



Further,

β̂∗λ̂pen − β̂∗R̄∗ = − 1√
T
ψR +

1√
T
β̂λ̂pen +

[
R̄− β̂λ̂pen

]
[
β0 +

1√
T

Ψβ

]′
W

[
β0λ0 +

1√
T
ψR

]
−
[
β0 +

1√
T

Ψβ

]′
W

[
β0 +

1√
T

Ψβ

] [
λ0 +

1√
T
ψpen

]
= op

(
1√
T

)
since ψpen = [(β′nsβns]

−1Wβ′ns[−ψR + βnsΨR]
This in turn implies that the bootstrap counterpart of the second stage satisfies

û∗ = arg min
u∈K

u′β′nsWβnsu+ 2u′nsβ
′
nsW (−ψR + Ψβ,nsλ0,ns) + ηT

∑k
j=1

1
||β̂∗j ||d

[|λ̂j,pen + u√
T
| − |λ̂j,pen|]

The weak convergence of
√
T (λ̂∗pen − λ̂pen) to

√
T (λ̂pen − λ0) now follows from the argmax theorem of Knight

and Fu (2000).

B.4. Proof of Proposition 4

Proof. The condition in Proposition 4 requires the strict monotonicity of the cdf to the right of a particular α-
quantile. This implies that if BT → B weakly, then B−1

T (α)→ B−1(α) as T →∞. Hence, P (λ0 ∈ IT,α)→ α
as T →∞.

If there is at least one non-spurious component (e.g. a common intercept for the second stage or any
useful factor), the limiting distribution of the estimate will be a continuous random variable, thus implying the
monotonicity of its cdf, and again, driving the desired outcome.

B.5. Proof of Proposition 5

Proof. The argument for the consistency and asymptotic normality of the Pen-GMM estimator is derived on
the basis of the empirical process theory. The structure of the argument is similar to the existing literature
on the shrinkage estimators for the GMM class of models, e.g. Caner (2009), Liao (2013), and Caner and Fan
(2014). I first demonstrate the consistency of the estimator.

The sample moment function can be decomposed in the following way:

1

T

T∑
t=1

gt(θ) =
1

T

T∑
t=1

(gt(θ)− Egt(θ)) +
1

T

T∑
t=1

Egt(θ)

Under Assumption 2, by the properties of the empirical processes (Andrews (1994))

1√
T

T∑
t=1

(gt(θ)− Egt(θ)) = Op(1)

Further, by Assumption 2.2

E

(
1

T

T∑
t=1

gt(θ)

)
p→ g1(θ)

Also note that for the strong factors ηT
1

‖β̂j‖d
1

∼ ηT−d/2Op(1) → 0, while for the spurious ones ηT
1

‖β̂j‖d
1

∼

ηT−d/2cjT
d/2 → c̃j > 0

Therefore, the whole objective function converges uniformly in θ ∈ S to the following expression

g1(θ)′W (θ)g1(θ) +

k∑
j=1

c̃j |λj |1{βj = 0}
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Finally, since g1(θ0,ns, λsp) = g1(θ0,ns,0k2), and {µf , vec(βf ), λ0,ns, λ0,c} are identified under Assumption 2.4,
{θ0,ns,0k2} is the unique minimum of the limit objective function.

Therefore

θ̂pen
p→ arg min

θ∈S
g1(θ)′W (θ)g1(θ) +

k∑
j=1

c̃j |λj |1{βj = 0}

and

θ̂pen,ns = {µ̂f , vec(β̂), λ̂ns, λ̂c} → θ0,ns = {µf , vec(βf ), λ0,ns, λ0,c}

λ̂sp
p→ 0k2

Similar to the case of the Fama-MacBeth estimator, in order to derive the asymptotic distribution of the
Pen-GMM, I rewrite the original optimization problem in the centred parameters u =

√
T (θ̂pen − θ0):

û = arg min
u∈K

LT (u)

where

LT (u) =

[
1

T

T∑
t=1

gt

(
θ0 +

u√
T

)]′
WT

(
θ0 +

u√
T

)[
1

T

T∑
t=1

gt

(
θ0 +

u√
T

)]

−

[
1

T

T∑
t=1

gt (θ0)

]′
WT (θ0)

[
1

T

T∑
t=1

gt (θ0)

]
+ ηT

k∑
j=1

1

||β̂||d1

(∣∣∣∣λj,0 +
uλ,j√
T

∣∣∣∣− |λj,0|)

and K is a compact subset in Rnk+2k+1.
Using the empirical process results (Andrews (1994)), from Assumption 2.1 it follows that

1√
T

T∑
t=1

gt

(
θ0 +

u√
T

)
− Egt

(
θ0 +

u√
T

)
⇒ Z(θ0) ≡ N(0,Γ)

Now, since Egt(θ0) = 0 and by Assumption 2.3,

1√
T

T∑
t=1

Egt

(
θ0 +

u√
T

)
→ G(θ0)u

uniformly in u.
Therefore,

1√
T

T∑
t=1

Egt

(
θ0 +

u√
T

)
⇒ Z(θ0) +G(θ0)u

Note that under the presence of useless factors, G(θ0)u = Gns(θ0)uns for u ∈ K, where uns = {uµ, uβ ; , uλ,ns, uλ,c},
that is all the localized parameters, except for the those corresponding to the risk premia of the spurious factors.

Therefore, by Assumption 2.4 the first part of the objective function becomes

VT (u) = TLT (u)⇒ [Z(θ0) +Gns(θ0)uns]
′
W (θ0) [Z(θ0) +Gns(θ0)uns]− Z(θ0)′W (θ0)Z(θ0)

= u′nsGns(θ0)′W (θ0)Gns(θ0)uns + 2u′nsGns(θ0)′W (θ0)Z(θ0)

Now, for the spurious factors: TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uλ,j√
T

∣∣∣− |λ0j |
]

=
√
TηT−d/2c2T

d/2 |uλ,j | =
√
T c̃ |uλ,j |,
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while for the usual ones: TηT
1

‖β̂j‖d
1

[∣∣∣λ0j +
uλ,j√
T

∣∣∣− |λ0j |
]

= c2
√
TT−d/2uλ,jsgn(λ0j)→ 0, since d > 2

Therefore, V̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
u′nsGns(θ0)′W (θ0)G(θ0)u+ 2u′nsG(θ0)′W (θ0)Z(θ0) if uλ,sp = 0k2

∞ otherwise

Due to the epiconvergence theorem of Knight and Fu (2000),

√
T (λ̂pen,sp)

d→ 0k2
√
T (θ̂pen,ns − θ0,ns)

d→ [Gns(θ0)′W (θ0)Gns(θ0)]−1Gns(θ0)W (θ0)Z(θ0)

where θ0,ns = {µf , vec(βf ), λ0,ns, λ0,c}
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